To appear in: Lecture Notes in Computer Science.,
Proceedings PARLE Conference, Eindhoven, 1987,

Petri Net Models for

Algebraic Theories of Concurrency
(extended abstract)

Rob van Glabbeek and Frits Vaandrager

Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amstercdam, The Netheriands

in this paper we discuss the issue of interleaving semantics versus True concurrency in an algebraic setting. We present vari-
ous equivalence notions on Petri nets which can be used in the construction of algebraic modeis:

(a) the occurrence net equivalence of Nieisen, Plotkin & Winskel; :

(b) bisimulation equivalence, which ieads to a model which is isomorphic to the graph modet ot Baeten. Bergstra & Klop;

(c) the concurrent bisimulation equivalence, which is also described by Nieisen & Thiagarajan, and Goltz;

(d) partial order equivalences which are inspired by work of Pratt, and Boudol & Castellani.

A central roie in the paper will be played by the notion of real-time consistency. We show that, besides occurrence net
equivalence, none of the equivalences mentioned above (including the partial order equivaiences!) is real-time consistent.
Therefore we introduce the notion of ST-bisimulation equivalence, which is real-time consistent. Moreover a compiete proof sys-
tem will be presented for those finite ST-bisimulation processes in which no action can occur concurrently with itseif.

Note: Partial support received from the European Communities under ESPRIT project no. 432, An integrated Formal Approach
to !ndustrial Software Development (METEOR).

INTRODUCTION

One of the most controversial issues in the theory of concurrency is the issue of interleaving semantics versus True
concurrency. People advocating interleaving semantics model the parallel composition of two processes by interleav-
ing the atomic actions performed by these processes. A typical equation valid in interleaving semantics is:
alib = a-b+b-a. The intended meaning of this equation is that when you observe the parallel composition of atomic
actions a and b, cither you see first the a and then the b, or you see first the b and then the a. The interleaving fans
are aware of the fact that for some applications their approach is not realistic (for example in those places where real-
time or fairness aspects are important). But since reality is extremely complicated one needs some simplifying assump-
tions, and they argue that the interleaving assumption is a good one: it allows for the construction of very elegant
mathematical models of concurrency in which specification and verification of large concurrent systems is feasible.

The True concurrency adherents on the contrary think that interleaving models are very unrealistic. With an enor-
mous enthusiasm they present all kinds of examples, formuilated in terms of Petri nets, event structures or
Mazurkiewicz traces, which show that the interleaving approach is bizarre.

Another controversy in the theory of concurrency which we would like to mention here is the issue of linear time
versus branching time. It has to do with the equation: a<(b +c) = a'b+a-c. Here the intended meaning is that when
you observe first a and then b ot c, this is just the same as when you observe a and then b or a and then c. Most True
concurrency theories use this equation because the people who developed these theories thought there was nothing
against it. The major part of the interleaving adherents however, reject the equation because they think that the timing
of the choices in a process is often essential They argue that for the proper description of features like deadlock
behaviour, divergence, fair abstraction and interrupt mechanisms, information concerning the timing of choices is cru-
cially important. Because we also think that very often the timing of choices is relevant, we are interested in branch-
ing time models.

The discussion in this paper takes place in the setting of ACP, the Algebra of Communicating Processes, as
described in {BK1-3). Until now all models studied in the ACP framework were based on the interleaving assumption
and it was very difficult to deal with real-time aspects of concurrent systems. However, real-time aspects are often
important (or even vital) in the design of concurrent systems. The major reason which motivated our excursion into
the domain of True concurrency, was that doing this might help us answer the following question:

Can the language of ACP:be used to specify real-time concurrent systems?

When True concurrency adherents argue that the interleaving approach is not realistic, the ‘interleavers’ answer that
their approach at least makes algebraic system verification possible. This leads to our second question:

Is it possible to perform algebraic system verifications in a non-interleaved semantics?

Petri nets; introduced in 1962 by Petri in his now famous thesis ([Pe]), is the best known framework in which both
True concurrency and branching time can be modelled. For this reason we have decided to define our models in terms

2

of Petri nets. Furthermore there are a lot of interesting theoretical results concerning Petri nets, which we might use.
Last but not least we have chosen Petri nets because they have nice graphical representations. Pictures are important,
not only from a didactical point of view, but aiso to make the analysis of the models easier.

A lot of people have been trying to combine ideas from CCS and ACP-like theories with True concurrency. NIEL-
SEN, PLOTRIN & WINSKEL [NPW] were (as far as we know) the first ones who looked for a branching time non-
interleaved model of concurrency. In [W1] an event structure semantics is presented for CCS and related languages.
In [GM] a semantics for CCS is presented based on the notion of occurrence nets. [Po] presents non-interleaved ver-
sions of various equivalences like observation equivalence and failure equivalence, in the setting of Petri nets.

However, in none of these papers much attention is paid to algebraic laws valid in the various models. Only in a
recent paper by BOUDOL & CASTELLANI [BC] this issue is studied. But their paper only deals with the case in which
there is no communication possible between the components of a system (communication will be deait with in a paper
by them which is now in preparation).

In the first section of this paper we present a short review of part of the theory of ACP. Section 2 contains the basic
definitions about Petri nets which we need in the rest of the paper. Moreover the fundamental notion of occurrence net
equivalence is defined. In section 3 we define the ACP-operators on Petri nets. Some of the definitions are adopted
from other authors, whereas some others (notably the sequential composition) are new here.

In section 4 we present our first algebraic model, which is based on the occurrence net equivalence. We will argue
that in this model there are not enough laws valid to make practical system verifications possible. Still the occurrence
net equivalence is important theoretically: it gives the identifications which, from an observational point of view,
should be made in any case. In section 4 we also give the semantical notion of bisimulation equivalence, which leads to
an interleaved Petri net model of the axiom system ACP, which is isomorphic to the graph model of BAETEN, BERGs-
TRA & Krop [BBK1]. Finally section 4 contains a non-interleaved model for a subset of ACP, based on the notion of
concurrent bisimulation equivalence. This equivalence, which can be situated between occurrence net and bisimulation
equivalence, is also described by NIELSEN & THIAGARAJAN [NT] and GoLtz [G]. All the equivalences in section 4
respect branching time.

In section 5 we add the concept of causality. Causality is not respected by the concurrent (or ordinary) bisimulation
equivalence. We present the pomser equivalence, which is derived from PRATT [Prl-2], and closely related to the trace
theory of MAZURKIEWICZ [M1-2}, see also [AR]. The pomset equivalence does respect causality but violates branching
time. This brings us to the pomset bisimulation equivalence, which is inspired by BounoL & CasTeLLANI [BC]. The
pomset bisimulation equivalence respects both causality and branching time. However, we will argue that it does not
fully respect the combination of both concepts. We propose a refinement of this notion which is more satisfactory in.
this sense.

Section 6 is a digression into the domain of real-time semantics. We give a real-time interpretation of process alge-
bra, using the notion of timed Petri nets as presented in, for example, CARLIER, CHRETIENNE & GIRAULT [CCG]. New
in our approach is the notion of real-time consistency. An equivalence relation on Petri nets is real-time consistent if it
does not identify nets with a different real-time behaviour. A model based on a real-time consistent equivalence
makes it possible to reason about concurrent systems in a real-time consistent manner without having to deal with the
full complexity of real-time. A major resuit of this paper is that, except for the occurrence net equivalence, all previ-
ously described equivalences (including the partial order equivalences!) are not real-time consistent.

Therefore we present in section 7 a new equivalence, which is real-time consistent: the ST-bisimulation equivalence.
This equivalence leads to a model for the ACP operators. We give a complete axiomatisation for finite processes in
which no action can occur concurrently with itself. The structure of the complete axiomatisation is remarkable: if one
wants to prove that two terms represent the same process in ST-bisimulation semantics, one first has to translate these
terms into other ACP-terms. Thereafter one has to prove the equivalence of the new terms using the axioms of ACP
(including the interleaving axiom CM1!!). If and only if this succeeds, the original terms are equivalent in the non-
interleaved ST-bisimulation semantics. In our view the results of section 7 show that in principle the language of ACP
can be used to specify real-time concurrent systems and to perform algebraic system verifications.

Due to lack of space almost all the proofs have been omitted. Also the topic of solving recursion equations is
skipped here. For these issues we refer to the full paper [GV].

§1 A LANGUAGE FOR COMMUNICATING PROCESSES

In this section we present a language for reasoning about processes in an algebraical way - that is without referring to
particular models - which is based on the axiom system ACP of BERGSTRA & KrLoP [BK 1-3]. ACP starts from a col-
lection A of given atomic actions. These actions are taken to be indivisible, and form a parameter of the axiom system.
For each atomic action a€A there is a constant a in the language, representing the process, starting with an a-step
and terminating after some time. Furthermore we have a special constant 8, denoting deadlock, the acknowledgement
of a process that it cannot do anything any more. me absence of an alternative. We will write A3 =4 U (6}. In ACP a
process can end in two ways: by terminating successfully or by reaching a state of deadlock. Now processes can be
built up from smaller ones by means of sequential, alternative and parallel composition operators. If x and y are two
processes, then x-y is the process that starts the execution of y after completion of x (x must have terminated success-
fully), and x +y is the process that can do either x or y. We do not specify whether the choice between the alternatives
is made by the process itself, or by the environment, but it should be made at the beginning of x +y. The merge of

3

two processes, x|ly, executes the processes x and y simultaneously and independently, except for communication
actions. In ACP, communication between parallel processes is modelled by means of a binary communication func-
tion v:4 4 XA 3—A;, which is commutative, associative and has § as zero element. y forms a second (and last) param-
eter of the system. If y(a,b)=c5:8 this means that if a occurs in a process x and b occurs in y then in the merge xlly
the processes x and y can communicate by synchronising the actions a and b. The synchronous performance of a and
b is then regarded as a performance of the communication action ¢. In a merge, communication is never forced: the
process x|y can either execute the actions a and b independently or perform the communication action ¢ instead. This
leaves open the possibility that x finds a communication partner in the environment, outside y, for instance in a con-
text (xl|y)llz. However, synchronisation can be forced by means of the encapsulation operator 3. Here H is a set of
atomic actions. Operator 3y blocks actions from H by means of a renaming into §. It is used to encapsulate a process,
i.e. to make communications with the environment impossible. In ACP there are also two auxiliary operators || and
|, which are used for reducing concurrency to nondeterminism. Here we will skip them for the moment. Below we give
the formal signature of our language, as well as some basic axioms.

1.1. Signature.

S (Sort): P (the set of processes)

F (Functions): +:PXP—P (alternative composition or sum)
PXP—>P (sequential composition or product)
l:PXP—P (parallel composition or merge)

Oy PP (encapsulation; H CA4)
C (Constants): 68€P (deadlock)
acP (atomic actions; a € A)

1.2. Note. In a product x -y we will often omit the -. About leaving out parentheses: we take - to be more binding
than other operations and + to be less binding than other operations. In case of an associative operator, we also leave
out parentheses.

1.3. Axioms. These are presented in table 1. Here acA,;x,y,z€P ;H CA.

x+y =y+x Al dy(a@) =aifaeH D1
x+(y+z) =(x+y)+z A2 dy(a) =8ifacH D2
x+x =x A3 y(x+y) = Ix(x)+ay(y) D3
(x+y)lz = xz+yz A4 Ay(xy) = 3y(x)-04(y) D4
(o) = x(y2) AS

x+éd=x A6 xlly = ylix Cl
x =48 AT (xlllz = xii(yllz) C2

TABLE 1

1.4. Recursion. A Recursive specification E is a set of equations {x =t,|xeVz} with V¢ a set of variables and ¢, a
process expression for x€Vy. Only the variables of ¥z may appear in #,. A solution of E is an interpretation of the
vanabla of Vg as processes (in a certain domain), such that the equations of E are satisfied.
The Recursive Definition Principle (RDP) tells us that every recursive specification has a solution. We conjecture
that all models presented here satisfy RDP. For a substantiation of this conjecture we refer to [GV].
Recursive specifications are used to define (or specify) processes. Our language can be made recursive, by adding
the syntactic constructs <x|E > (with x € V), denoting the x-component of one of the solutions of E. This limits

the class of models of the language to the ones satisfying RDP. However, in this extended abstract recursive con-
structs will not be used.

§2 PETRI NETS
In this section we will define the clements of the models that will be constructed in this paper. This is not the place to
give an extensive introduction into the theory of Petri Nets. For this we refer to [R] or [RT].

2.1. DEFINITION: Let A4 be a given alphabet.
i) A labelled marked net (over A) is a 5-tuple N = (S,T,F,M,,,[) where:
- Sis a set of places or S-elements;
- Tis a set of transitions or T-elements, SNT= 2,
- FCSXTUTXS, Fis called the flow relation, T Cran(F);
- M, :S-N, M, is called the initial marking;
- 1:T—A, lis called the labelling function.

ii) ForxeSUT ‘x = {yl|yFx) is called the preset of x; x* = (y|xFy} is called the postset of x.

4

2.2. The well known graphical representation of nets is as follows. Places and transitions are represented as circles
and boxes, respectively. The flow relation is indicated by arcs between the corresponding circles and boxes. Transitions
are inscribed by their labels. The initial marking is represented by placing dots (zokens) in the corresponding circles.

2.3. DEFINITION: Let N =(S,T,F,M,,,l) be a labelled marked net.
1) A function M : S—N is called a marking of N;
ii) Let M be a marking We say that teT is M-enabled (enabled, to occur or to fire), notation M[r>, if

Vse't: M(s)=1;

iii) Let M,M’ be markings and let r&T. We say that M’ t-follows M, and results from firing t, notation M{r >M’, if:
a M[t>
b. VseS§:

M(s)—1 if se1—¢
M(s) = SM(s)+1 if set’ —*¢
M(s) otherwise

iv) Let M be a marking. A sequence @ = £,* - - - *t,€T" is M-enabled, notation M[a>>, if there exist My, ... M,
such that My =M and for 1<i<n: M;_,[t;>M;. We say that M, is obtained from M by firing a notation.
Mla>M,. We also say that M, is reachable from M;

v) Let M, M’ be markings, let « = ¢;*---*,€T", and let M[a>M’. In this case we say that the sequence
a=I(t;)* - - - »l(t,)EA" is M-enabled, notation M[o>. We also say that M’ is obtained from M by firing o, nota-
tion Mo>M’';

vi) For each marking M, [M > is the set of markings reachable from M;

vii) N is called safe if for each M €[M,> and for each seS M (s)<1. In this case each markmg reachable from M,,
can be considered as a subset of S.

2.4. DEFINITION: Let N =(S,T,F,M,,,]) be a safe labelled marked net.
i) Let M be a reachable marking of N and let U be a subset of 7. We say that U is M-enabled, notation M{U >, if:

a WieUVse't:M(s)=1

b. Vet'eU:t5t' = “tN°t'= 2 (Because N is safe, this implies *tN(t")'=2.)
ii) N has bounded parallelism if for every M €[M,;,>, and U CT such that M{U >, wehavethatstﬁmte

2.5. Note. In this paper we will only consider safe labelled marked nets, which have bounded parallelism and a non-
empty initial marking. We will use the word net to denote such a structure. For i=0,1,..., and nets N;, we will
denote the components of N; by resp. S;, T;, F;, (M), and };. Let A be some infinite cardinal, and let 4 be a given set
of atomic actions. N (4) is the set of nets over alphabet 4 such that the cardinality of the sets of places and transi-
tions is less than A.

2.6. Occurrence nets. Above we have introduced the notion of a Petri net. Furthermore we have defined the dynamic
behaviour of a net in terms of its markings and the firing rule. Most Petri nets have the property that the state (mark-
ing) which resuits after a number of transitions has been ﬁred, gives us almost no information about this firing
sequence. Conndetforexamplethenetmﬁgure 1

‘FIGURE 1 FIGURE‘ 2

There is only one state, so we have absolutely no information about the firing sequence of a’s and b’s leading to it.
Figure 2 presents another example. The state which results from firing the a-transition, could have been caused also by
the firing of the b-transition.

Below we will define the fundamental notion of occurrence nets - a subclass of acyclic nets with places which can
only be forwardly branched. Occurrence nets have the property that each transition can fire only once. Furthermore
we can deduce from the state of the net which were the transitions leading to it. Occurrence nets were introduced in
NIELSEN, PLOTKIN & WINSKEL [NPW]. Our definition is taken from WINSKEL {W2].

2.6.1. DEFINITION: An occurrence net is a net (S,T,F,M,,,[) for which the following restrictions are satisfied:
) VseS:|'si<l;

) seM, & ‘s=0J;
3) F* (the transitive closure of F) is irreflexive and V¢eT: ('€T | 'F t} is finite;

4) The conflict relation § is irreflexive, where for x,yeSU T: x #y o el 15, 1N '#B, tF'x and 'F’y.

2.6.2. ProposITioN: Let N=(S,T,F,M;,,l) be an occurrence net. Then: VteT IMe[M;,> M[t> and
VseS AIM e[M,,> :se€M. In words: N does not contain superfluous transitions or places.

2.7. Unfolding. By means of the notion of unfolding we will now relate to each net an occurrence net. As pointed out
by [NPW] and [W2], the behaviour of the unfolding of a net is exactly the same as the behaviour of the net itself; the
only difference is that the unfolding has a “memory” in which the dynamic history is stored. Definition 2.7.1 is rather
technical, but the reader can learn the essential properties of the unfolding operator from examples 2.7.2 and theorem
2.8. - : ,

2.7.1. DEFINTTION: Let N, be a net. The unfolding of Ng, notation %N), is the net N, defined inductively as follows.
S:,T;, Fy, (M;,); and 9 are the least sets satisfying:

. (M CS1C{(ts) | teT U{*}s€80};

T\ C{(M,t) | MCS),teTy};

Fl gSlXT] UTIXSl;

MC Pow(S));

Mh = ()| seMnk} e,

If, for some index set I, {(t;,s;) | i€l}eMand {s; | iel}[t> then:

A B A

= ({(t,',s,') | iel and S,'E.t},t)ETl
{(,s) | set"}CS,
{(t;,s:) | iel and sie tyu{(,s)|ser}en

{((t;»5:),t) | il and 5;€°1}U (@, (t's)|set’ }CF,
1, is the function from 7T into 4 defined by: (m,f)e T, = Li((mn) = @)

2.7.2. EXAMPLES:

w § [)= OO0~

FIGURE 3

FIGURE 4

2.8. THEOREM: Let N be a net, let Ny=%N), and let K be as defined in section 2.7.1. Then:

) M= [(Mah>;

il) N, is an occurrence net;

iii) If Ng is an occurrence net, then N is isomorphic to N¢ (two nets are considered isomorphic if they only differ in the
names of places and transitions).

2.8.1. REMARK: For A>N,; we have that & : Ny (4)—>N\(4).

6

2.9. DEFINITION: Two nets N and N, are occurrence net equivalent, notation Ny=,.N, iff WN,) is isomorphic to

UN).

Clearly, =, is an equivalence relation. Note that theorem 2.8 implies that in each equivalence class of =, there is.
up to isomorphism, exactly one occurrence net.

2.10. Root-unwinding. For the proper definition of some of the process operators we need to work with nets which
have acyclic roots, i.e. the places of the initial marking have no incoming arrows. What we could do in order to reach
this situation is a restriction of the domain to a subset of nets which have acyclic roots, for example to occurrence
nets. Or we could start the definitions of the operations with the unfolding of the nets involved. We do not like the
first solution because we think that in a lot of applications it is very natural to work with nets with cyclic roots. The
second solution is also not favoured by us since the operation of unfolding a net is very complicated. This means that, -
in order to add two nets one has to perform an awful amount of work. Moreover, the operation of unfolding refers
heavily to the token-game and is therefore very operational. We are interested in a general non-operational construc-
tion that relates, with a minimum amount of work, to every net an occurrent equivalent net with acyclic roots. The
simplest solution we could find is the root-unwinding operation presented below. The construction resembles one in
GoLTz [G]), but, due to the fact that our nets can be infinite and we want to stay in axiomatic set theory, our construc-
tion is a bit more complicated. But as explained above, if someone does not like the operation he or she can just skip
the definition and work with unfoldings instead.

2.10.1. DEFINITION: We define the Poot-unwinding map R:N,(4)—N,(4) as follows. Let NgeNy(4). Let M, =
(se(My) | “s5%2} be the set of cyclic root elements, and let M7, = {s° [seM,,.} be a copy of this set. Then
A(Ny) is the net N, obtained by adding the places in M., and put them in the initial marking instead of the ele-
ments of M,

Si= SoUMS and (M) = (Mindo— M) UM,
We define a set U by:

= (Mg —(L‘jx't) | X a finite subset of Tj}
te

Note that the cardinality of U is less than A. For each UeU and teT, such that *zN U is non-empty, we introduce a
new transition <<U,t> such that:
*<Ut> = (Ct—-0)U{s° | setNU} and <Ust>" =1t

The label of <U,z> is the label of 7. Because the cardinality of U is less than A, the number of new transitions in
the root-unwinding N, is also less than A. Thus we avoid the cardinality problem that arises if we introduce a new
transition <U,z> for every subset U of M.

2.10.2. EXAMPLE:

FIGURE 5

2.10.3. LEMMA: Let NyeN,(4) and let Ny =R(Ng). Then:
1) No=peNy;

i) VseMy,) :'s=69;

iii) If Vse(My) : "s=43, then N, is identical to Ny.

§3 DEFINITION OF ACP OPERATORS ON NETS

In this section we will define the operators of section 1 on the set N\(4) of nets. All the mpdéls which are presented
in this paper are constructed by dividing out an equivalence relation on nets, which is a congruence with respect to the
operators as defined here. '

3.1. An atomic action a €4 is interpreted as:

3.2. § is represented by the net:

©)

Execution of the process associated with a net terminates when, after firing a number of transitions, no token is left.
So the process @ terminates after the firing of its transition. The process § however cannot terminate because there is
no transition that can remove the token of the initial marking. : ‘

3.3.1. +: The definition of the + is from GoLTz & MYCROFT [GM]. By means of a cartesian product construction,
conflicts are introduced between all pairs of initial tramsitions of the two nets involved. Let Ny, N, eN,(4).
N2=9(No)andN3=§R(N|). N‘ =N0+N|1sdeﬁnedby. B

Se= (S2—(Mp))U(S3 = (Min)3)U (Min)s X(Min)y

T4 = T2 U T3

Fo= (FUF)N(SeXTyUT XS0 U ((60:5100) | (o.EFz or (1,0)€Fs)
(Minda = (Min)y X (Min)s -

ly=1,Uly
3.3.2. EXAMPLE
. - F 00 -
[b] [
O
2]
FIGURE6

3.4.1. -: Below we present a definition of the --operator. In the definition we use the well-known construction of com-
plements: for each place we introduce a' number of complementary places in such a way that a place contains a token
iff the complementary places are empty. If all the new places contain a token we know that the old places are empty,

and thus execution of the first process is finished. If No,Ny €NA(4) and Ny =8(N)), define N3 = NN by:
S5 = SoU(S2—(MaR)U(So X (Min)2) | | o
T3 = To U Tz
(Ma)s = (Mindo UtSo—(Min)o) X (Min)s L
Besides the arrows of Fo and Fz n(s:;)(T;UTg XS;), F; contains arrows defmed by
[,V €Fo A (6,5)&Fo As’€(Mish] = (1,(s.s")eF3. |
[(,5)eFo A(s.)&Fo A’ €(Min)] = ((5,5),1)€F 3
[(50,51)€S0 X (M A(51,0)€T 2] = ((s0,51:1)EF3

The labelling function is given by: I; = loUl,.

8

3.4.2. EXAMPLE:

FIGURE 7

3.5.1I: If No,N€Ni\(4), obtain N; = NylIN, by taking the disjoint union of N, and N, adding transitions:
{(,u)|teTy, ueT, v(lo(t),],(u))#3)}
and taking: 1,((t,u)) = y(lo(D).1(@)), *(tu) = "tU'u and (Hu) = ' Uu'.

3.6.1. 3y4: Let NeNi(4). 34(N) is obtained from N by omitting the transitions with labels'in H and the flow pairs
they occur in.

3.6.2. EXAMPLE: Let y(a,b)=c, and let H={a,b}. Then:
wC (o) |) = 8y (

FIGURE 8 _

§4 OCCURRENCE NET, BISIMULATION AND CONCURRENT BISIMULATION SEMANTICS '
In section 3 we defined the operators of section 1 on the Petri net domains of section 2. Thus we are able to associate
nets to process expressions in a compositional way. Now a Petri net model can be obtained by dividing out a
congruence relation on a domain Nj(4). In such a model several processes - which are regarded to have the same
behaviour - are identified. In fact the suitability of a congruence is determined by those aspects of the behaviour of
concurrent systems we are interested in. Since we want to build proof systems for verifying that two processes have the
same behaviour, and since we will use the constructed models as a criterion for establishing the validity of the proof
systems, it is no good solution not to identify any processes at all (to select the identity as congruence). On the con-
trary, our purpose is to identify any two processes for which we can find no interesting property that discriminates
between them. Of course it is application dependent which properties should be considered as interesting. Therefore
we will describe a variety of possibilities. Each of the equivalences mentioned in this paper gives rise to another pro-
cess semantics. ;

4.1. Occurrence net semantics.

The least identifying semantics of this paper is based upon occurrence net equivalence, as defined in section 2.9.
Occurrence net semantics was already employed by NIELSEN, PLOTKIN & WINSKEL [NPW], WINSKEL [W2] and GoLtz
& MYCROFT [GM]. It carefully respects the local structure of nets, but the identity of places and transitions is not
preserved. However, in an algebraic approach in which we have operators like + and -, this loss of identity is una-
voidable, because the definition of these operators only makes sense if we identify a net N with K(N).

4.1.1. PROPOSITION: =, is a congruence w.r.. the operators of section 1.
4.1.2. PROPOSITION: N\(A4) / =_ satisfies the axioms of table 1, except for axioms A3, A4 and AS.

9

As illustrated in figure 9, the model N\(4) / =_ does not even identify processes like a and a +a, which behave very
much the same. Hence we argue that in this model there are not enough laws valid to make practical system

verifications possible.
o7 :
2] 2] a

FIGURE 9

4.2. Bisimulation semantics.

In the occurrence net semantics of the previous section the structure of processes is carefully respected, but, due to the
low degree of identification, there are not enough laws for algebraic system verification. Now we will look at an oppo-
site point in our spectrum. Bisimulation semantics is firmly based upon the interleaving assumption. Consequently,
some features of concurrency, like causal dependencies, cannot be modeled any more. However, for this semantics rich
algebraic theories are available which can be - and have been - used for verification of several kinds of systems.

As far as this paper is concerned, the virtue of bisimulation semantics is twofold. Firstly, it gives rise to powerful
algebraic tools which can be used for all applications in which properties like causality and real-time behaviour are
unimportant and the interleaving assumption is harmless. And secondly, it will turn out to be a valuable expedient for
axiomatising non-interleaved semantics. '

We start by defining bisimulation equivalence or bisimilarity. The original notion, although defined on graphs instead
of nets, is due to PARK [Pa). It can be regarded as a refinement of MILNER’S observational equivalence [Mi]. Clause 4
below represent an idea from the ACP framework: the distinction between deadlock and successful termination (cf.
section 1.0, section 3.2, and figure 12).

4.2.1. DEFINITION: Let N, N, eNx(4). A relation R C Pow(Sg)X Pow(S,) is a bisimulation between N and N, nota-

tion R:NyEN,, if:

L(Mindo R (M5

2if My R M, and M[tg>M'y, then there are t,€T, and M’} CS, such that ly(tg)=1,(1}), M[t,>M’;, and
My R M'y;

3.as 2 but with the roles of Ng and N reversed;

4.Mo R Ml = (Mo=g eMl::ﬂ)_

N and N, are bisimilar, notation No= N, iff there is an R:Nq=N,.

4.2.2. EXAMPLES:

FIGURE 12 FIGURE 13

42.3. PROPOSITION: = is an equivalence relation on N\(A), which is a congruence w.r.t. the operators of section 1.
42.4. PROPOSITION: N\(A) / = satisfies the axioms of table 1. '
42.5. PROPOSITION: Let NeNj(A). Then NEWN). So =, = <.

10

4.3. Petri nets and process graphs.
Since bisimulation semantics is based on the interleaving assumption, the model presented above does not really use
the expressive power of Petri nets. In fact we claim that for A>R,, the model N(4) / = is isomorphic to the graph
model Gy(4) / = of [BBK1] (if we omit all 7’s from this model). The usefulness of an interleaved Petri net model is (in
our view) establishing a connection between the ‘classical’ graph models and the non-interleaved Petri net models in
this paper. Furthermore, we think that the definition of the parallel composition operator is more natural in the Petri
net model than it is in the graph model. Below, we try to make the relation between the two models more explicit.
4.3.1. DEFINITION: Let NgeNy(4). The sequentialisation of N, notation &Ny), is the net N defined by:

S1=[(Min)o>—{2}

T] = {(M,l)'MES], tETQ and M[1>}

Fi= ((M(M,0)|(M,NeT, }U{(M,0), M) |(M,)eT;, M{1>M’ and M'#2)

(Min)l = {(Mm)O}
LM,)= ly(t) for (M,1)eT,

Because each reachable marking M of net Ny can be characterized by a sequence ocT" with (M,)o[0>M, we have
that the cardinality of S is less than A. Thus § is a function from N, (4) into Nj(4). -

4.3.2. EXAMPLE:

FIGURE 14 o~

43.3. LEMMA: Let Ny eNy(A) and let Ny =S(N,). Then:

DNo=N;

DM | =1,

iivVeeT,: |"t|=1and |"| <1,
iv)&(N) is isomorphic to N .

4.3.4. REMARK: Lemma 4.3.3 says that each element of Ny(4) / = contains a process-graph-like Petri net. In fact there
is a 1-1 correspondence between sequentialisations of nets and r-less process graphs. This is illustrated below.

FIGURE 15

4.4. A complete proof system. :

Now we will present a sound and complete proof system for bisimulation semantics; that is, a set of rules and axioms
such that an equation ¢ =¢’ holds in the model Nx(4) / = if and only if it can be proved from the rules and axioms in
this set. The proof system consists of the equational theory ACP of BERGSTRA & Kiop [BKI-3] (which deals with
closed terms) plus a limit rule for open terms. In ACP we use two auxiliary operators | (left-merge) and | (commun-
ication merge). The process x|y is the process xlly, but with the restriction that the first step comes from x, and x|y

11

is x|ly with a communication step as the first step. These operators are used in the reduction of concurrency to non-
determinism, which is the basic simplification introduced by the interleaving approach.

44.1.1. |L: If No,N,eNy(A), obtain N, = NylLN, by taking NolIN, and adding a new S-element ROOT, which will

become the only element of the initial marking of N;. For each teTy and M C Sy for which (M,)o[t >M, we add a
new T-element ¢° and put:

-1(t%) = Lo(r)
-*(t% = {ROOT} and (% = MU(M,)

4.4.1.2. ExamMPLE: Let y(a,b)=c. Then:

) (0 L
[a] [<] [®]

FIGURE 16

442.1. |: If Ng,N,eNy(A), obtain N; = No|N, by taking NylIN, and adding a new S-clement ROOT, which will
become the only element of the initial marking of N;. Let (Mu)olto>Mo, (Muh[t1>M, and v(lo(to).11(2)))=cF8.
Then we add a new T-element (¢y,7,) and put:

'12«‘0stl)) =c

-*(tot)) = (ROOT} and (tg,1))" = MoUM,
4.4.2.2. ExaMPLE: Let y(a,b)=c. Then:

FIGURE 17

4.4.3. ACP consists of the axioms A and D of table 1 and the axioms CM below.
xlly = xlly+ylLx+xly CMIl

all x = ax CM2
@)Ly = a(xlly) cM3
(x+ylz = xlLz+yllz CM4
(ax)ib = (alb)x CMS
al(bx) = (aldb)x CMé6

(@ax)i(by) = (alb)xlly) CM7
x+p)z =xlz+ylz CM8
xi(y+z) = x|y +xlz CM9
alb = v(a,b) CM10

TABLE 2

Furthermore, we have the limit rule (LR) of BAETEN & BERGSTRA [BB]. It states that if an equation holds for all finite
processes (i.c. if it holds after any substitution of closed terms for the variables in this equation) then it holds for all
processes. Now the axioms C of table 1 are derivable from ACP+LR.

12

4.4.4. PROPOSITION: = is also a congruence w.r.t. the operators ||_ and |.
4.4.5. PROPOSITION: N\(4) /= £ ACP+LR, i.e. N\(4) / = is a model of ACP+LR.
4.4.6. THEOREM: Ny(4) /= r 1=t & ACP+LR+r:=r, ie. ACP+LR is a sound and complete proof system.

4.5. Concurrent bisimulation semantics.

In this section we present a non interleaved variant of bisimulation semantics. This concurrent bisimulation semantics
takes explicitly into account the possibility that in a process like allb the actions a and b occur concurrently (besides
the possibilities that they occur one after the other, or synchronise into a communication action y(a,b)). Definition
4.5.2 of the concurrent bisimulation, but without our termination clause 4, also appeared in [NT] and {G].

4.5.1. DEFINITION: Let N = (S,T,F,M,,,/) be a net, let M,M’ be markings of N and let U be a subset of T. We say
that M’ U-follows M, and results from firing the transitions in U concurrently, notation M[U>M’, if:)

a. M[U> (see definition 2.4)

b. VseS:

M(s)—1 if reU:se"t—t"
M'(s) = {M(s)+1 if teU:set’™—1
M(s) otherwise

- Note that if M is reachable and M{U>M’ then U must be finite (since N displays only bounded parallelism, see 2.5)
so M’ is reachable again. :

4.5.2. DEFINITION: Let Ng,N; €Nj(4). A relation R CPow(Sg) X Pow(S)) is a concurrent bisimulation between N and

N, notation R:NoS N, if:

1. (Mo R (Mixhs

2. if My RM, and My[Uy>M'y, then there are U, C T, and M’, CS; such that {o(Uy)=1L(U,), M\[U >M',
and M’y R M’, (here [(U;) denotes the multiset of labels of the transitions in U;);

3. as 2 but with the roles of Ny and N reversed;

4 MoRMl #(M():ﬂ @M|=Q).

No and N, are concurrently bisimilar, notation Ng= N1, iff there is an R:No=.N,.

4.5.3. PROPOSITION: €, is an equivalence relation on N)\(A), which is a congruence w.r.. the operators of section .
4.5.4. PrOPOSITION: N\(4) / = satisfies the axioms of table 1. .

4.5.5. PROPOSITION: =, = &, = <.

4.5.6. EXAMPLE:

FIGURE 18

4.5.7. REMARK: The algebraic equivalent of figure 18 is the identity:
a(blic)+(alle)d = a(blic)+(allc)d +abllc

Here we see that the algebraic approach allows us to represent a rather complex Petri net by means of a relatively sim-
ple formula.

§5 PARTIAL ORDER SEMANTICS
The equation

allb=ab +ba,)

which holds in the interleaved bisimulation semantics of section 4.2, is rejected in the concurrent bisimulation seman-
tics of section 4.5. The reason for rejecting this equation is that the left hand side leaves open the possibility that a
and b occur simultaneously, whereas this option is not present at the right hand side. The True concurrency adherents

13

also reject this equation, but for a more fundamental reason: in allb the actions a and b occur independently, while in
ab+ba there is a causal link between them: a occurs before b or b occurs before a. In order to point out the
difference more sharply the following notation will be used.

All models of concurrency investigated in this paper (except the one based on occurrence equivalence) satisfy the
axioms Al-3 from table 1, expressing that the alternatives in a choice can be regarded to form a set. Now write x Cy

for x+y=y. From Al, A2 and A3 respectively it follows that C is antisymmetrical, transitive and reflexive, and
hence a partial order. Now the formula

ablic C(alleyb +a(blic) | (ii)

(cf. section 4.5.7) does hold in concurrent bisimulation semantics: in abilc there are five possibilities: ¢ occurs before a,
simultaneous with a, between a and b, simuitaneous with b, or after b. Each of these possibilities is already present at
the right hand side, so the summand ablic says nothing new and can be deleted. However, (ii) is incompatible with
True concurrency: in ablic the action ¢ occurs independently of both a and b, while in (alic)b +a(blic) the ¢ action
occurs either causally before b or causally behind a.

Hence the True concurrency approach depends in a subtle way on a philosophically complicated issue like causality
(for a philosophical discussion of the concept of causality sec HosPERs [Ho]). However, it is also possible to reject for-
mulas like (ii) on more earthly grounds, as for example real-time behaviour. If we suppose that the execution of an
atomic action takes a fixed amount of time (or that a fixed amount of time elapses between the instantaneous
occurrence of an atomic action and the following action), and if we furthermore assume that ¢ takes as much time as a
and b together, then abllc can be executed much faster than (allc)b +a(blic).

This section is devoted to the causal approach to True concurrency. In the next section the real-time approach will
be examined. There we will see to what extent these approaches coincide. After some preliminaries we start with the
definition of the pomset equivalence, a partial order approach stemming from PRATT [Prl-2], which is a variant of
trace theory as originated by MAZURKIEWICZ (see [M1-2] and [AR).

5.1. Causality.
5.1.1. DEFINITION: An A-labelled partial ordered set is a triple (X,<,/) with X a set, < a partial order on X, and
/: X—>A a labelling function. Two such sets (X, <q,lo) and (X,<y,!,) are isomorphic if there exists a bijective map-
ping f: Xo—X, such that f(x)<f(y) & x<y and /,(f (x))=lo(x).

A partial ordered multiset (pomset) over A is an isomorphy class of A-labelled partial ordered sets. As usual, pom-
sets can be made setlike by requiring that the elements of the sets X should be chosen from a given set.

A totally ordered multiset (tomset) over A can be defined similarly. There exists a 1-1 correspondence between
sequences oA " and finite tomsets. Let o denote the tomset corresponding with a. A sequence o€A” is a sequentialisa-
tion of a pomset p, if o can be obtained by expanding the partial order of p into a total one.

5.1.2. DEFINITION: Let N =(S,T,F,M,,,[)eN)(A). A transition ¢’ is directly preceded by a transition ¢ if £ N t'5 2.
For a=t,* - - - *tnT" define the relation < on the set Oc(a)= {({;,i)| 1<<i<m} of numbered occurrences of transi-
tions in a as the partial order generated by: (4,i)<(f;,j) if i<j and # is directly preceded by #. This makes
(Oc(a), <,I) with I'(t;,i)=1(t;) into an A-labelled partial ordered set. The corresponding pomset is denoted by pom (a).

Let M, M’ be markings of N, aeT", p=pom(a) and let M{a>M’. In this case we say that p is M-enabled, notation
M[p>. We also say that M’ is obtained from M by firing p, notation M[p>M’.

5.1.3. PROPOSITION: Let N =(S,T,F,M,,,))eN\(4), let M,M’ be markings of N, and let p be a pomset over 4 such
that M[p>M". Let 6€A" be a sequentialisation of p. Then M[o>M’ (using definition 2.3.(v)). Note that we cannot
conclude M[o>M".

5.2. Pomset semantics.

5.2.1. DEFINTTION: The set pom(N) of pomsets (with termination information) of a net NeNj(4) is given by
pom(N) = {pom(a)| Mp[a>} U {(pom(a), /)| Mula>@)}. Two nets N,N,eN,(A) are pomset equivalent, notation
N1 =pom N2, if pom(N1)=pom(N2).

5.2.2. ExampLEs: (Note that the first two nets are identified in concurrent bisimulation semantics.)

FIGURE 19

14

5.2.3. PROPOSITION: =,,, is an equivalence relation on N\(A), which is a congruence w.r.t. the operators of section 1.
5.2.4. PROPOSITION: N\(A4) / =_ satisfies the axioms of table 1.
5.2.5. PROPOSITION: =,; = =pom-
5.3. Pomset bisimulation semantics.
Although the partial order approach sketched above preserves causality, other features of concurrency get lost. The
equation

a(b+c) = ab+ac (i)

is not valid in (concurrent) bisimulation semantics, since the timing of the choice between b and ¢ is different on the
left and right hand side. However, (iii) is satisfied in N\(4) / =_ , so in this model all information about the timing of
choices is lost. As argued by (for instance) MILNER [Mi], this implies that deadlock behaviour cannot be described in
the model. Thus we encountered bisimulation equivalences, respecting branching time but violating causality, and
pomset equivalence which respects causality but violates branching time. Now the natural question arises whether the
virtues of both approaches can be combined or not, i.e. if a model of concurrency exists respecting both causality and
branching time. Such a model was presented by BounoL & CASTELLANI [BC]. A variant of this model, adapted to the
setting of the present paper will be treated below (Boudol and Castellani used a different language, and event struc-
tures instead of Petri nets).

5.3.1. DEFINTTION: Let Ny, N, €N,(4). A relation R CPow(S¢)X Pow(S)) is a pomset bisimulation between Ny and

N\, notation R:No= 0Ny, if: ‘

L. (Minh R (Miu)l;

2. if Mg R M, and for ageTy Mylag>M’y, then there are a; €T} and M’; CS,; such that pom(ag)=pom(a,),
M][al >M’] and M'o R M'l;

3. as 2 but with the roles of Ny and N reversed;

4. MoRMl = (M0=Q¢=M|=@).

N and N, are pomset bisimilar, notation No=pmN, iff there is an R:No=,omN).

5.3.2. EXAMPLES:
a(bllc)+(allc)d & pom a(blic)+(allc)d +ablic (as for =y, in contrast with €, see (i) in §5.0) (a)
allb+ab P pom allb Sy, allb+allb (as for =,om, see figure 19) (b)
alld+c)+allb+@+c)ilb Spom ali(p+c)+(@+c)llb (taken from [BC])‘ (©)

5.3.3. PROPOSITION: ‘-'—’P,,,, is an equivalence relation on Nx(A), which is a congruence w.r.t. the operators of section I.
5.3.4. PROPOSITION: N)\(4) / =_ satisfies the axioms of table 1. 4

5.3.5. PROPOSITION: =oe = Zpom = 2., Zand =

pom-

5.4. Combining causality and branching time.

The formula (ii) respects branching time, but violates causality. It holds in concurrent bisimulation semantics, but
does not hold in pomset or pomset bisimulation semantics. On the other hand the formula

ablic Ca(d +d)lic (iv)

respects causality but violates branching time. It holds in pomset semantics, but not in (concurrent) bisimulation or
pomset bisimulation semantics. The combination of (ii) and (iv):

ablic Ca(b +d)lic +(alic)db +a(blic) V)

respects both causality and branching time. However, it violates the idea behind the combination of these two con-
cepts. The right hand side will perform an a and a ¢ action, and ecither a b or a d. The action ¢ can occur causally
before b or causally behind a. It is also possible that ¢ occurs independent of both a and b, but in that case ¢ occurs
also independent of the choice between b and d. The summand abllc adds the possibility that ¢ occurs independent of
both a and b, but causally behind the choice in favour of b. Hence (v) violates the real combination of causality and
branching time. Nevertheless it is satisfied in pomset bisimulation semantics. The model based on the following gen-
eralised pomset bisimulation equivalence does not have this disadvantage. However, in [BC], BOUDOL & CASTELLANI
presented a proof system for a language without communication, that is sound and complete for-closed terms with
respect to pomset bisimulation semantics. Such a result is not available for the generalised version.

5.4.1. DEFINITION: Let No,N, €N, (4). A relation R C Pow(Sq) X Pow(S}) is a generalised pomset bisimulation between
Nj and N, notation R:NoSgomN |, if:

L. (My)o R (M5 :

2. if MQ R Ml and for ag =tg *tgp* " ’IQ"ETB, Mo [Io[>M0| [102>M02 LR [10,,>M0,,, then there are a; =

15

ty*tipr -+, €T7 such that pom(ag)=pom(ay), My [ty >My [1e>My - (1 >Mu, and My, R M, for
I<i<n; _

3. as 2 but with the roles of Ny and N, reversed;

4. MoRMl =>(M0=g=>M|=g)

N, and N, are generalised pomset bisimilar, notation N o:’WN 1» i there is an R:N oﬁwN 1-

5.4.2. EXAMPLES:

abllc +a(p+d)llc +(allc)p +ablic)y & gom a(b+d)llc+(alle)b+a(blic) (unlike = om> €€ (V) (2)
all(b+c)+allb+(@+c)lb ‘—'—’W ali(b+c)+(@a+o)ilb (as for ‘Z’P,,,,,, see 5.3.2(c)) (b)

5.4.3. PROPOSITION: (:W is an equivalence relation on Ny(A4), which is a congruence w.r.1. the operators of section I.
5.4.4. PROPOSITION: N(4) / =__ satisfies the axioms of table 1.

L= =g e«
5.4.5. PROPOSITION: =y = “gom = pom-

§6 REAL-TIME SEMANTICS

In this section we will describe a possible real-time interpretation of process algebra. First we show how real-time
behaviour can be attached to Petri nets. This gives the timed Petri net model as presented in, for example, CARLIER,
CHRETIENNE & GIRAULT [CCG]. In BAETEN, BERGSTRA & Krop [BBK2] it is shown how operational rewrite systems
can be used to give real-time semantics for the ACP language. The intuition behind this semantics is comparable with
the intuition behind the timed Petri nets. New in our approach is the notion of rea!-time consistency. An equivalence
relation on Petri nets is real-time consistent if it does not identify nets with a different real-time behaviour. A model
based on a real-time consistent equivalence makes it possible to reason about concurrent systems in a real-time con-
sistent manner without having to deal with the full complexity of real-time. We show that the concurrent and pomset
bisimulation equivalences are not real-time consistent. However, in the next section we will present an equivalence
relation on nets which is real-time consistent. '

6.1. Timed Petri nets. Let N =(S,T,F,M;,,]) be a safe labelled marked net. Time is introduced in the following
manner. We assume the presence of a function r:A—>R"*. The r-function associates a (fixed) processing time with
cach atomic action. Here we have chosen the range of 7 to be the set R*, but this could also have been Q* or N*.
We assume that r has a positive lower bound in order to avoid Zeno's paradox. Further we restrict ourselves to nets
in Nj(A4) (so we have bounded parallelism). As a consequence of these assumptions the set of points in time at which
some transition starts or ends firing, will be discrete. In case a transition u fires at time ¢, it removes the tokens from
the input places. r(/(u)) time units later tokens are placed in the output places of u. We assume that it takes no time
to resolve conflicts: when a transition can fire, it will fire immediately, or it will be disabled immediately. This means
that we have maximal parallelism. We make these intuitions formal in the following definitions: :

6.2. DEFINITION: Let N =(S,T,F,M,,,[)eNx(A) and let r: A>R™ . An instantaneous description is a 4-tuple (M, U, p,1)

where:

- MCS is the set of places with a token;

- UCT is the set of transitions which are firing. If a transition is firing, its input places are already empty
(VueU:*un M= o), whereas its output places are still empty;

- p:T-{0,00) is a function which gives for cach transition the residual processing time. p(u)=0 for those transi-
tions which are not firing;

- t€[0,0) is the time.

We will now define a transition relation —, which tells how onc instantaneous description can evolve into another.

6.3. DEFINITION: Let N =(S,T,F,M,,,[)eN\(4), r:A->R™* and let (M,U,p,]) be an instantaneous description of N.
The binary relation — is defined by:
1. if M[u>, p'(u)=1(I(u)) and p’@)=p(@) if #5u, then: (M,U,p,t) = (M —"u, UV (u},0"t);

2. if ueU and p(u)=0, then: (M, U, p,1) = (MUu*, U—{u},p.t);
3. if YueT:-M[u>, U#@, 0<At=min{p(u)|uelU}, p'(w)=p(u)—At if ucU, and p'(u)=0 otherwise, then:
(M,U,p,t) > (M,U,p',t +41).

6.4. DEFINITION: Let NeN,(A). A real-time execution of N is a sequence <I,;>;<, of instantaneous descriptions of N
such that IO = (Mily E',}\x. 0,0) and I,'—)I,'+1 for i <n. ’

The following definition is derived from REED & RoscOE [RR].

16

6.5. DEFINITION: A rimed action is an ordered pair (1,a), where a is an atomic action and t€[0,) is the time at which
it occurs. The set {0,00) X 4 of all timed actions is denoted TA. The set of timed traces is:

(TA)<x = {6eTA"| if (t,a) precedes (¢',a’) in o, then t <!’}

6.6. In a trivial way we can associate a timed trace with each real-time execution of a net NeN,)(4): we take the
sequence of actions executed by the system, together with their starting times. Let 7z, : N (4)=(TA)< be the function
which, for given 7: 4 —»R™*, associates with each net the set of its timed traces.

6.7. DEFINITION: An equivalence relation = on Nj(4) is called real-time consistent, if for all 7: 4 —R ™ with the pro-
perty 3¢€>0 VaeA: 1(a)>¢ and for all Ng,N; eN\(4): Ng=N| = 1, (Ng)=1t1,(N).

6.8. PROPOSITION: The equivalence relation = g,q,, is not real-time consistent.
PRrOOF: Below we give two nets which are generalised pomset bisimilar, but have different timed traces.

O, pom =2 Ot =0
2]

(0 (2 ONONO

<] e} [

FIGURE 20

o]

If we define communication by y(r,s)=c and if H={r,s}, then we can express the identity algebraically as follows:
d(arlirlls) = dy(arilrils)+acd :

Assume r(a)=7(c)=1. Now any real-time execution of the net on the left will start with anaand a c action. The net
on the right however, has also the possibility to start with an a action only, followed by a ¢ action after 1 time unit.

6.9. COROLLARY: The equivalence relations <, ,, , €., € and =,,,, are not real-time consistent.
L Ladd pom ¢ pom

6.10. QuEsTION: Is <, real-time consistent for fully observable process expressions, as defined in section 7.5.2?

§7 ST-BISIMULATION SEMANTICS

In this section we present a non-interleaved Petri net model for the theory of section 1, together with a complete proof
system for closed process expressions without autoparallelism (cf. section 7.3). The model is based on a real-time con-
sistent equivalence on nets, called ST-bisimulation equivalence. The idea behind ST-bisimulation equivalence is rather
simple: A bisimulation can be viewed as a relation between the states of two systems. In the graph model of [BBK1],
the states are the nodes in the graphs. In the bisimulation equivalence on Petri nets which we presented in the previ-
ous sections, the states of the system are distributed entities: namely the set of places containing a token. In the phi-
losophy leading to the ST-bisimulation the state of a system is the set of places containing a token, together with the
sequence of transitions which are firing, in the order they started firing. This is just what one obtains when leaving
out the real-time information from the instantaneous descriptions as defined in section 6.2 (the order of the transitions
can be derived from the function p in 6.2).

7.1.1. DEFINITION: Let No,N| €N (4). A relation R C(Pow (So)X T3)X (Pow(S1)X T}) is an ST-bisimulation between
Ny and N‘, notation R:NO‘:!STNI’ if:

L (Min)o,€) R (Min)r,6); _

2. if (Mg,09) R (Ml,dl) and Mg[1p>, then there is a 1 €T, such that [o(2o)=0(ty), M,f{t,> and

(Mo—"tg , 0g*to) R (M ="t , o1*11);
as 2 but with the roles of Ny and N, reversed;

if (My , gp*to*po) R (M , o1*t)*p;) and log| = |oy |, then (Mo Uto" , gg*pg) R (M1 U1L)" , 01*py);
as 4 but with the roles of Ny and N reversed;

. (Mo,0) R (M),0,) = ((My,00)=(2,€) & (M,01)=(2,¢)).

N, and N, are ST-bisimilar, notation No=srN , iff there is an R:N=srN;.

rus W

7.1.2. ExampLES: Define communication by y(r,s)=c and let H={r,s}. Then:

17

dglarlirlls) + acd # sp dg(arllrlls) Ssr (allc)d (both parts unlike =0, and Zgom, see §6.8) ()
ablic +a(b+d)llc +(allc)b+a(biic) & st a(b+d)lc+(allc)p +a(bllc) (unlike ‘-_-'po,,, see §5.4) (b)

alio+c)+alb+(@+c)llb S allp+c)+(@+c)lib (as for =y, and = gom see example 5.3.2(c)) (c)

The second part of example (a) shows that ST-bisimulation does not respect causality. Both parts together show that
pomset bisimulation and ST-bisimulation are incomparable.

7.1.3. PROPOSITION: S is an equivalence relation on Ny(A), which is a congruence w.r.t. the operators of section I.
7.1.4. PROPOSITION: N\(A) / =_ satisfies the axioms of table 1.
7.1.5. PROPOSITION: All implications between the equivalences of this paper are displayed below:

< g —_
EOCC U

% «—> > L g

T SsT = T = =

7.2. THEOREM: g1 is real-time consistent.

7.3. A complete proof system for closed terms without autoparallelism.

A net is said to have autoparallelism if two transitions with the same label can fire concurrently (from some reachable
marking). A closed process expression has autoparallelism if this is the case for the associated net. Next we will
present a proof system for ST-bisimulation semantics which is sound and complete for closed terms without autoparal-
lelism. The structure of this proof system is as follows: We introduce an operator split that splits any atomic action a
into the sequential composition of actions a* and a~, representing the beginning and the end of a. Then we prove
that No=srN, iff split(No)split(N,). Now we already have a proof system for =, which is sound and complete for
closed terms, namely ACP. Thus, a proof system for “gr can be obtained from ACP, by adding a sound set of
axioms for the split operator that allows any closed term split(f) to be revwritten into a closed ACP-term (without
occurrences of the split operator). In this way the interleaving based axiom system ACP can be used to prove identities
in the non-interleaved ST-bisimulation semantics.

7.3.1. Syntax. Formally, this idea will be implemented by a two-sorted algebra. We have a sort P of processes (the
processes in a domain with ST-bisimulation semantics) and an auxiliary sort SP of split processes, in a domain with
interleaving. On P we have the constants and operators of section 1; on SP we have constants 8, a*, a~ (for a€A),
the operators +, -, || and 8y of section 1, and the auxiliary operators || and | of section 4.4. Furthermore there is a
unary operator split:P—SP.

7.3.2. Semantics. Let A be a set of atomic actions and y:4 X A3—As a communication function. We define the set
of split actions A~ and the communication function y:4§" X 4§ —Aj" by:

A*=(a%,a"laed}) Aa*,b") = vab)? v(@~.b7) = v(a,b)” Ya*,b7) =19
Now we give a model for this two-sorted signature. The set Nj(4) /=, will be the domain of processes and
N,(4*) /= will be the domain of split processes. In order to define the operator split:N\(4) / =, SNL(AT) /= we

first define split:Ny(4)—>Nx(4*) and then check that the pair (Zsr, =) is a congruence for this operator. The
remaining constants and operators are defined as before.

7.3.2.1. split: Let NoeNy(A). N, =split (Ng)eNA(4 *) is defined by:
S,= SoUT,
Ty= {t*,t7 |teT,)
Fi= {(st7)|(D)EF YUt ,0|1eTo) U{(te)| reTo}U{(t™.5)| (1,5)eFo}
Mn= (M)

L*)= (@)* and L7)= (2(0)”
So split(N) is obtained from N, by replacing any net segment

by a net segment E@—-O——-B::

That (S, ©) is a congruence for split, follows from the following proposition.

7.3.3. PrROPOSITION: For any No, N, eNy(4): NoeSsrN, = split(No)‘-'—’.split(Nl).

18
7.3.4. PROPOSITION: For any N¢,N| €N\(A) without autoparallelism: split (No)Zsplit(N) = No=srN,.

7.3.5. The split rule. Let SPR be the rule split(x)=split(y) = x =y. Proposition 7.3.4 states its soundness for
processes without autoparallelism. Furthermore proposition 4.4.6 states the soundness of ACP on sort SP. Now let
SPLIT be a sound set of axioms, such that for any closed process expression p of sort P there is a closed ACP-
~ expression g such that SPLIT split(p)=q. Then it follows trivially that SPLIT + ACP+SPR is a sound and complete

proof system for closed terms without autoparallelism. So it suffices to find a suitable version of SPLIT. This we will
do in three stages. ‘

7.4. The case without communication. Suppose that y(a,b)=38 for a,bcA. Let SP" be the theory presented in the left
upper block of table 3, but with SP3 replaced by SP3*: split (x|ly)=split (x)llsplit(v). Then SP" is sound with respect
to the model of section 7.3.2 and for any closed process expression p of sort P there is a closed ACP-expression g of
sort SP such that SP” + split(p)=g.

7.5. The case with fully observable processes. 1f we just expand the approach of section 7.4. with communication as
defined in 7.3.2, then a serious problem arises: SP3* is not sound any more. Counterexample (if y(a,b)=c):

split(allb) = a*@ b*b~ +b (@ b~ +b"a")+b (b a*ta +a* (b a” +a b")+ctce”
split(@)lisplit(p) = a*(@a~b* b~ +b* (@b~ +b~a”+c)+
+b*(b"ata " +at(b"a +a b +c ")+ct(b"a +a" b +c7)
Note that split (a)ilsplit(b) is a very unrealistic process since certain actions can end before they begin. It turns out
that sometimes a* communicates with b*, while a~ and b~ occur independently. In order to disable this suspicious
behaviour we will introduce a state operator Ay, that renames actions @~ into § if they are not preceded by an action
a” . Then we can replace axiom SP3* by SP3 (see table 3).
For the general theory of state operators sece BAETEN & BERGSTRA [BB]. Our state operator remembers which actions

are currently firing. This memory is located in a subscript S, with S ranging over Pow(4). So we add operators
As:SP—SP 1o our signature for S CA4. The axioms for Ag are presented in the right-hand half of table 3.

split(x +y) = split(x)+split (y) SPl1 | Ag8) = 6 L1
split (xy) = split(x) -split (y) SP2 | Ag@*) =a"* L2
split (x|ly) = Ag(split(x)lisplit(y)) SP3 | As(@™) =a” ifaeS L3
split Bg(x)) = 9y=(split(y)) SP4 | Ag(a”) =difaeS L4
split(8) = & SPS | As(@a*x) =a* Asua)(x) L5
split(a) = a* -a” SP6 | As(@a™x) = a~ As_(y(x)if aeS L6

As@a™x) = difaesS L7
split (x)=split(y) = x =y SPR | Ag(x+y) = Ag(x)+As(y) L8

TABLE 3

Now SP+L allows any closed process expression spiit(p) with p of sort P to be rewritten in a closed ACP-term.
However, the axiom SP3 is still not sound for all processes. Therefore we will first limit ourselves to a restricted
domain of processes, for which its soundness can be proved.

7.5.1. DEFINITION: The alphabet a(N) of a net N is the set of labels of transitions which are M-enabled from a mark-
ing M €[M;,>. Remark that if Ng = N, then a(Ng) = a(N,). Now the alphabet a(p) of a closed process expression
p is the alphabet of the associated net.

7.5.2. DEFINITION: A closed process expression p is fully observable if for any subexpression x|y of p we have
a(x) N a(y) = 2, and for any a,c €a(x), b,d€a(y) we have:

a #* v(a,b) # b

¥(@,b) = Y(c,d) %8 = a=c Nb=d
In this case any action can be traced back to the components in a merge it originated from. Obviously a fully observ-
able process expression has no autoparallelism. '

7.5.3. PROPOSITION: The axiom SP3 holds for fully observable closed process expressions ullv. Hence
SP+ACP+ L+ SPR is sound and complete for fully observable closed process expressions.

19

7.6. The general case, but still without autoparallelism. This case can be derived from the previous one by first doing
some ‘preprocessing’ to make closed terms fully observable. For details see our full paper [GV].

7.7. CONJECTURE: We can make the proof system sound and complete for processes in which at most n transitions
with the same label can occur concurrently by splitting atomic actions into the sequential composition of n +1 parts.

REFERENCES

[AR]
(BB]
[BBK1]
[BBK2]
[BKI]

(BK2]

(BK3]
(BC]
[CCG]
([GV]

[G]
[GM]

[Ho]
M1}
M2]

[Mi]
[NPW]

[NT]

[Pa]
[Pe]
[Po]

(Pr]
(Pr2]

{RR]
[R]

(RT]

[w2]

AALBERSBERG, 1J.J. & G. ROZENBERG, Theory of traces, Technical Report No. 86-16, Institute of Applied
Mathematics and Computer Science, University of Leiden, 1986.

BAETEN, J.C.M. & J.A. BERGSTRA, Global renaming operators in concrete process algebra, CWI Report CS-
R8521, Amsterdam, 1985.

BAETEN, J.CM., J.A. BERGSTRA & J.W. KLOP, On the consistency of Koomen’s fair abstraction rule, CWI
Report CS-R8511, Amsterdam, 1985, to appear in Theor. Comp. Sci. ‘

BAETEN, J.C.M., J.A. BERGSTRA & J.W. KLOP, An operational semantics for process algebra, CW1 Report CS-
R8522, Amsterdam, 1985, to appear in: Proc. Banach semester, Warschau 1985, North-Holland.

BERGSTRA, JA. & J.W. KLOP, Process algebra for synchronous communication, Information & Control 60
(1/3), 1984, pp. 109-137.

BERGSTRA, J.A. & J.W. KLOP, Process Algebra: Specification and Verification in Bisimulation Semantics, In:
Proc. CWI Symposium Math. & Comp. Sci. (M. Hazewinkel, J.K. Lenstra & L.G.L.T. Meertens, eds.),
North Holland, 1986, pp. 61-94.

BERGSTRA, J.A. & J.W. KLOP, Algebra of Communicating processes with abstraction, Theor. Comp. Sci. 37(1),
1985, pp. 77-121.

BouDOL, G. & 1. CASTELLANI, On the semantics of concurrency: partial orders and transition systems, Rapports
de Recherche No 550, INRIA, Centre Sophia Antipolis, 1986.

CARLIER, J., CHRETIENNE & C. GIRAULT, Modelling scheduling problems with timed Petri nets, In: Advances in
Petri Nets 1984 (G. Rozenberg, ed.), Springer LNCS 188, 1985, pp. 62-82.

VAN GLABBEEK, R.J. & F.W. VAANDRAGER, Petri net models for algebraic theories of concurrency, to appear
as: CWI Report CS-R87.., Amsterdam, 1987.

GovLrz, U., Building Structured Petri Nets, Arbeitspapiere der GMD 223, Sankt Augustin, 1986.

GoLrz, U. & A. MYCROFT, On the relationship of CCS and Petri nets, In: Proc. ICALP 84 (J. Paredaens,
ed.), Springer LNCS 172, 1984, pp. 196-208.

HosSPERS, J., An Introduction to Philosophical Analysis, second edition, Prentice-Hall, Inc., Englewood Cliffs,
NJ., 1967. .

MAZURKIEWICZ, A., Concurrent program schemes and their interpretations, Report DAIMI PB-78, Computer
Science Department, Aarhus University, Aarhus, 1978.

MAZURKIEWICZ, A., Semantics of concurrent systems: a modular fixed-point trace approach, In: Advances in
Petri Nets 1984 (G. Rozenberg, ed.), Springer LNCS 188, 1985, pp. 353-375.

MILNER, R., 4 calculus for Communicating Systems, Springer LNCS 92, 1980.

NIELSEN, M., G.D. PLOTKIN & G. WINSKEL, Petri nets, event structures and domains, part I. Theor. Comp.
Sci., 13(1). 1981, pp. 85-108. ‘

NIELSEN, M. & P.S. THIAGARAJAN, Degrees of Non-Determinism and Concurrency: A Petri Net View, In: Proc.
of the 5* Conf. on Found. of Softw. Techn. and Theor. Comp. Sci. (M. Joseph & R. Shyamasundar, eds.),
Springer LNCS 181, 1984, pp. 89-118.

Parx, DM.R., Concurrency and automata on infinite sequences, Proc. 5th GI Conference (P. Deussen, ed.),
Springer LNCS 104, 1981, pp. 167-183.

PETRL, C.A., Kommunikation mit Automaten, Schriften des Institutes fiir Instrumentelle Mathematik, Bonn,
1962.

POMELLO, L., Some equivalence notions for concurrent systems. An overview. In: Advances in Petri Nets 1985
(G. Rozenberg, ed.), Springer LNCS 222, 1986, pp. 381-400.

PRATT, V.R., On the Composition of Processes, Proc. of the 9¥* POPL, 1982, pp. 213-223.

PRATT, V.R., Modelling Concurrency with Partial Orders, International Journal of Parallel Programming, Vol.
15, No. 1, 1986, pp. 33-71.

REED, G.M. & A.-W. ROSCOE, A Timed Model for Communicating Sequential Processes, In: Proc. ICALP 86
(L. Kott, ed.), Springer LNCS 226, 1986, pp. 314-323.

REISIG, W., Petri Nets, An Introduction, EATCS Monographs on Theoretical Computer Science, Springer-
Verlag, 1985. 4

ROZENBERG, G. & P.S. THIAGARAJAN, Petri nets: basic notions, structure, behaviour. In: Current Trends in
Concurrency, Overviews and Tutorials (JW. de Bakker, W.P. de Roever, G. Rozenberg, eds.), Springer
LNCS 224, 1986, pp. 585-668.

WINSKEL, G., Event structure semantics for CCS and related languages, In: Proc. 9th ICALP (M. Nielsen &
E.M. Schmidt, eds.), Springer LNCS 140, 1982, pp. 561-576.
WINSKEL, G., A new definition of morphism on Petri net, In: Proc. STACS 84 (M. Fontet, K. Mehlhorn, eds.),
Springer LNCS 166, 1984, pp. 140-150. :

