The Meaning of Negative Premises

in Transition System Specifications 11
(extended abstract)!

R.J. van Glabbeek*
Computer Science Department, Stanford University
Stanford, CA 94305, USA.

rvglcs.stanford.edu

This paper reviews several methods to associate transition relations to transition
system specifications with negative premises in Plotkin’s structural operational style.
Besides a formal comparison on generality and relative consistency, the methods are
also evaluated on their taste in determining which specifications are meaningful and
which are not.

1 Transition system specifications

In this paper V and A are two sets of variables and actions. Many concepts that will
appear are parameterised by the choice of V and A, but as in this paper this choice is
fixed, a corresponding index is suppressed.

Definition 1 (Signatures). A function declaration is a pair (f,n) of a function symbol
f ¢ V and an arity n € N. A function declaration (c,0) is also called a constant
declaration. A signature is a set of function declarations. The set T(X) of terms over a
signature X is defined recursively by:

o VCT(X),
o if (fyn) € X and ty,...,t, € T(X) then f(t1,...,t,) € T(X).

A term c¢() is often abbreviated as c. A X-substilution o is a partial function from V
to T(X). If o is a substitution and S any syntactic object (built from terms), then
S[o] denotes the object obtained from S by replacing, for z in the domain of o, every
occurrence of z in S by o(z). In that case S[o] is called a substitution instance of S. S
is said to be closed if it contains no variables. The set of closed terms is denoted T().

Definition 2 (Transition system specifications). Let 3 be a signature. A positive -
literal is an expression ¢ — t' and a negative Y-literal an expression t —/+ or t —/+ t'
with ¢,¢/ € T(X) and @ € A. For ¢,¢' € T(X) the literals ¢t — ¢’ and ¢ /=, as well as
t 25t and t —/> ¢, are said to deny each other. A transition rule over Y is an expression
of the form % with H a set of X-literals (the premises or antecedents of the the rule) and
« a Y-literal (the conclusion). A rule % with H = () is also written . An action rule is
a transition rule with a positive conclusion. A transition system specification (TSS) is
a pair (X, R) with ¥ a signature and R a set of action rules over . A TSS is standard
if its rules have no antecedents of the form ¢ -+ ¢/, and positive if all antecedents of its
rules are positive.

*This work was supported by ONR under grant number N00014-92-J-1974.
'In Proc. ICALP ’96, Paderborn (F. Meyer auf der Heide & B. Monien, eds.), LNCS 1099, pp. 512-513,
1996. Full version available as Report STAN-CS-TN-95-16, 1995, and by ftp from boole.stanford.edu.

The first systematic study of transition system specifications with negative premises
appears in BLooM, IsTRAIL & MEYER [2]. The concept of a (positive) T'SS presented
above was introduced in GROOTE & VAANDRAGER [9]; the negative premises ¢ —/+
were added in GROOTE [8]. The notion generalises the GSOS rule systems of [2] and
constitutes the first formalisation of PLOTKIN’s Structural Operational Semantics (SOS)
[10] that is sufficiently general to cover most, if not all, of its applications. The premises
t -+ t' are added here, mainly for technical reasons.

The following definition tells when a transition is provable from a TSS. It generalises
the standard definition (see e.g. [9]) by (also) allowing the derivation of transition rules.
The derivation of a transition ¢ —— ¢’ corresponds to the derivation of the transition
rule tiH>t/ with H =). The case H #) corresponds to the derivation of ¢t —= ¢’ under

the assumptions H.

Definition 3 (Proof). Let P = (X, R) be a TSS. A proof of a transition rule £ from P
is a well-founded, upwardly branching tree of which the nodes are labelled by 3-literals,
such that the root is labelled by «, and if 7 is the label of a node ¢ and K is the set of
labels of the nodes directly above ¢, then

1. either K =P and 8 € H,

2. or % is a substitution instance of a rule from R.

If a proof of % from P exists, then % is provable from P, notation P %
A closed negative literal « is refutable if P § for a literal § denying a.

Definition 4 (Transition relation). Let 3 be a signature. A transition relation over ¥
is a relation T C T(X) x A X T(X). Elements (¢, a,t’) of a transition relation are written
as t — t'. Thus a transition relation over ¥ can be regarded as a set of closed positive
Y-literals (transitions).

A closed literal « holds in a transition relation 7', notation T = «, if « is positive
and o€ Tora=(t—t')and (t =5 t)¢ T or a=(t /) and (t = t') € T for no
t'e T(X). Write T' = H, for H a set of closed literals, if 7' = o for all & € H. Write
T = p, for p a closed proof, if T' = « for all literals « that appear as node-labels in p.

A positive TSS specifies a transition relation in a straightforward way as the set of
all provable transitions. But as pointed out in GROOTE [8], it is much less trivial to
associate a transition relation to a 1TSS with negative premises. Several solutions are
proposed in [8] and BoL & GROOTE [3]. Here I will present these solutions from a
somewhat different point of view, and also review a few others.

a b
P c—/+>

The TSS Py can be regarded as an example of a TSS that does not specify a well-defined
transition relation (under any plausible definition of ‘specify’).! So unless a systematic
way can be found to associate a meaning to TSSs like P, one has to accept that some
TSSs are meaningless. Hence there are two questions to answer:

Which TSSs are meaningful, (1)
and which transition relations do they specify? (2)

'All my examples P; consider TSSs (X, R) in which X consists of the single constant c only.

In this paper I present 8 possible answers to these questions, each consisting of a class
of TSSs and a mapping from this class to transition relations. Two such solutions are
consistent if they agree which transition relation to attach to a TSS in the intersection
of their domains. Solution S’ extends S if the class of meaningful TSSs according to S’
extends that of S and the two are consistent, i.e. seen as partial functions S C S’.

Logic programming

The problems analysed in [8] in associating transition relations to TSSs with negative
premises had been encountered long before in logic programming, and most of the solu-
tions reviewed in the present paper stem from logic programming as well. However, the
proof theoretic approach to Solution 7, as well as Solutions 6 and 8 and some comparative
observations, are, as far as I know, new here.

The connection with logic programming may be best understood by introducing
proposition system specifications (PSSs). These are obtained by replacing the set A of
actions by a set of predicate declarations (p,n) with p ¢ V a predicate symbol (different
from any function symbol) and n € IN. A literal is then an expression p(¢y,...,¢,) or
—p(ty, ..., t,) with ¢; € T(X). A PSS is now defined in terms of literals in a same way
as a TSS. A proposition is a closed positive literal, and a proposition relation or closed
theory a set of propositions. The problem of associating a proposition relation to a PSS
is of a similar nature as associating a transition relation to a TSS, and in fact all concepts
and results mentioned in this paper apply equally well to both situations.

If I would not consider TSS involving literals of the form ¢ —/+, a TSS would be a
special case of a PSS, and it would make sense to present the paper in terms of PSSs.
The main reason for not doing so is to do justice to the réle of literals ¢ -4+ in denying
literals of the form ¢ — ¢/. However, as elaborated in the full paper, every TSS can
be encoded as a PSS and vice versa, in such a way that all concepts of this paper are
preserved under the translations.

A logic program is just a PSS obeying some finiteness conditions. Hence everything
I say about TSSs applies to logic programming too. Consequently, this paper can in
part be regarded as an overview of a topic within logic programming, but avoiding the
logic programming jargon. However, I do not touch issues that are relevant in logic
programming, but not manifestly so for transition system specifications. For these, and
many more references, see ApT & Bor [1].

2 Model theoretic solutions

Solution 1 (Positive). A first and rather conservative answer to (1) and (2) is to take
the class of positive TSSs as the meaningful ones, and associate with each positive TSS
the transition relation consisting of the provable transitions.

Before proposing more general solutions, 1 will first recall two criteria from Broow,
IsTRAIL & MEYER [2] and BoL & GROOTE [3] that can be imposed on solutions.

Definition 5 (Supported model). A transition relation 7" agrees with a TSS P if:

T =t -2 ' < there is a closed substitution instance ; ft of a rule of P with T'|= H.
—s ¢!

T is a model of P if “<” holds; T is supported by P if “=" holds.

The first and most indisputable criterion imposed on a transition system 7T specified by
a TSS P is that it is a model of P. This is called being sound for P in [2]. This criterion
says that the rules of P, interpreted as implications in first-order or conditional logic,
should evaluate to true statements about 7T'. The second criterion, of being supported,
says that T" does not contain any transitions for which it has no plausible justification
to contain them. In [2] being supported is called witnessing. Note that the universal
transition relation on T(X) is a model of any TSS. It is however rarely the intended
one, and the criterion of being supported is a good tool to rule it out. Next I check that
Solution 1 satisfies both criteria.

Proposition 1 Let P be a positive TSS and T the set of transitions provable from P.
Then 7' is a supported model of P. Moreover 1" is the least model of P.

Starting from Proposition 1 there are at least three ways to generalise Solution 1 to
TSSs with negative premises. One can generalise either the concept of a proof, or the
least model property, or the least supported model property of positive TSSs. Starting
with the last two possibilities, observe that in general no least model and no least
supported model exists. A countere\ample is given by the TSS P, (given earlier), which
has two minimal models, {¢ — ¢} and {c LN c}, both of which are supported.

Solution 2 (Least). A TSS is meaningful iff it has a least model (this being its specified
transition relation).

Solution 3 (Least supported). A TSS is meaningful iff it has a least supported model.

These two solutions turn out to have incomparable domains. The TSS P, below has
{c %5 ¢} as its least model, but has no supported models. On the other hand P; has
two minimal models, namely {c LN c} and {c -+ ¢}, of which only the latter one is
supported. This is its least supported model.

c 7= P,

P, -
c—c c—c

Obviously Solution 1 is extended by both solutions above. However, Solutions 2 and
3 turn out to be inconsistent with each other. P, has both a least model and a least
supported model, but they are not the same.

a b b a
c/- c—c c—c P c—c
5

P4 a a b a
c—c ¢c—c 25 c—c

Solution 2 is not very productive, because if fails to assign a meaning to the perfectly
reasonable TSS P;. Moreover, it can be criticised for yielding unsupported transition
systems, as in the case of P,. However, in P; the least model {¢ —%+ ¢} appears to
be a better ChOlce than the least supported model {¢c % ¢, ¢ LN c}, as the ‘support’
for transition ¢ —= ¢ is not overwhelming. Thus, to my taste, Solution 3 is somewhat
unnatural.

In BLoowm, IsTrAIL & MEYER [2] the following solution is applied.

Solution 4 (Unigue supported). A TSS is meaningful iff it has a unique supported model.

The positive TSS Ps above has two supported models,) and {¢ -+ ¢}, and hence shows
that Solution 4 does not extend Solution 1.

Although for the kind of TSSs considered in [2] (the GSOS rule systems) this solution
coincides with all acceptable solutions mentioned in this paper, in general it suffers from
the same drawback as Solution 3. The least supported model of P, is even the unique
supported model of this TSS. My conclusion is that the criterion of being supported is
too weak to be of any use in this context.

This conclusion was also reached by FAGEs [5] in the setting of logic programming,
who proposes to strengthen this criterion. Being supported can be rephrased as saying
that a transition may only be present if there is a nonempty proof of its presence, starting
from transitions that are also present. However, these premises in the proof may include
the transition under derivation, thereby allowing for loops, as in the case of P;. Now the
idea behind a well-supported model is that the absence of a transition may be assumed a
priory, as long as this assumption is consistent, but the presence of a transition needs to
be proven without assuming the presence of (other) transitions. Thus a transition may
only be present if it admits a valid proof, starting from negative literals only.

Definition 6 (Well-supported).? A transition relation T is well-supported by a TSS P

if:
there is a closed proof p, with T' |= p, of a

transition rule {lvt/ without positive antecedents.

TeEt- >t

Note that “«<” is trivial, and a well-supported transition relation is surely supported.
My concept of well-supportedness can easily be seen to coincide with the one of

FAGEs [5]. It is closely related to the earlier concept of stability, developed by GELFOND

& LIrscHITZ [7] in logic programming, and adapted for TSSs by BoL & GROOTE [3].

Definition 7 (Stable transition relation). A transition relation 7' is stable for a TSS P

if:
T o there is a closed transition rule ; ivt without positive antecedents
t—t & —t
= with P I {lvlandleN.

t——1

—

Proposition 2 The concept of stability of Definition 7 coincides with that from [3].
Moreover, T is stable for P iff it is a well-supported model of P.

The following two solutions are adaptations of Solutions 3 and 4, were the require-
ment of being supported has been replaced by that of being well-supported. The second
is taken from [3].

Solution 5 (Stable). A TSS is meaningful iff it has a least stable transition relation.
Solution 5 (Stable). A TSS is meaningful iff it has a unique stable transition relation.
The particular numbering of these two solutions is justified by the following.

Proposition 3 A TSS has a least stable transition relation iff it has a unique stable
transition relation. Moreover, Solution 5 (stable) extends Solution 1 (positive) and is
consistent with Solution 2 (least) and 3 (least supported).

2 The full version of this paper, which appeared as Stanford report STAN-CS-TN-95-16, contained an
incorrect definition of well-supportedness (but leading to the same notion of a well-supported model). As
observed by Jan Rutten, Proposition 3 in that version, stating that well-supported transition relations
are supported, was false. The mistake had no other bad consequences.

Solution 5 improves Solutions 3 and 4 by rejecting the TSS P, as meaningless. It also
improves Solution 2 by rejecting the TSS P, (whose least model was not supported).
Surprisingly however, Solution 5 not only differs from the earlier solutions by being
more fastidious; it also provides meaning to perfectly acceptable TSSs that were left
meaningless by Solutions 2, 3 and 4.

cH4s S
Fs ; —
c—c¢c C—C

An example is the TSS Ps. There is clearly no satisfying way to obtain ¢ —— ¢. Hence

¢ —+ and consequently ¢ Lye {c N c} is indeed the unique stable transition relation
of thls TSS. However, Ps has two minimal models, both of which are supported, namely
{c LN c} and {c = c}

It is interesting to see how the various solutions deal with circular rules, such as
C_: , and rules like —ﬁ The support-based solutions (3 and 4) may use a circular rule
to obtain a transition that would be unsupported otherwise (Example P;). This is my
main argument to reject these solutions. In addition they may (or may not) reject T'SSs
as meaningless because of the presence of such a rule (Example Fs). On the other hand,
Solutions 2 and 5 politely ignore these rules. To my taste, there are two acceptable
attitudes towards circular rules: to ignore them completely (as done by Solutions 1,
2 and 5), or to reject any TSS with such a rule for being ambiguous, unless there is
independent evidence for a transition ¢ - ¢. A strong argument in favor of the first
approach is the existence of useful rules of which only certain substitution instances are
circular (cf. [3]). A solution that caters to the second option will be proposed in the
next section. a

Solution 2 can treat a rule % as equivalent to ¢ — ¢ (namely if there are no
other closed terms than ¢, cf. P,), which gives rise to unsupported transition relations.
Solutions 3, 4 and 5 do not go so far, but use such a rule to choose between two
otherwise equally attractive transition relations. This is illustrated by the TSS Fr,

which determines the transition system {¢ — ¢} according to each of the solutions 2-5.

a b a a

C7L> C7L> C7L> C7L>

Pr ; - - B c ¢ -
c—3y¢ C—¢C ¢c—c c—c

Ignoring rules like a7L> is unacceptable, as this would yield unsound transition relations
(non-models). But ‘it could be argued that any T'SS with such a rule should be rejected
as meaningless, unless there is independent evidence for a transition ¢ — ¢, as in Px.
This would rule out P7. Solutions that cater to this taste will be proposed next.

3 Proof theoretic solutions

In this section I will propose solutions based on a generalisation of the concept of a proof.
Note that in a proof two kinds of steps are allowed, numbered 1 and 2 in Definition 3.
Step 1 just allows hypotheses to enter, in case one wants to prove a transition rule. This
step can not be used when merely proving transitions. The essence of the notion is step
2. This step reflects the postulate that the desired transition relation must be a model
of the given TSS. As a consequence those and only those transitions are provable that
appear in any model. When generalising the notion of a proof to derive negative literals

it makes sense to import more postulates about the desired transition relation. Note
that a model T of a TSS P is supported iff

TRttt <« for each closed substitution instance fltl of a rule of P one has T [£ H.

and well-supported iff

Tt 251 <« for each set of negative closed literals N with P Nt one has T' £ N.

Therefore I propose the following two concepts of provability.

Definition 8 (Supported proof). A supported proof of a closed literal a from a TSS P
is like a closed (positive) proof (see Definition 3), but admitting steps of the form

3. [is negative and for each closed substitution instance of a rule of P whose con-
clusion denies 3, a literal in K denies one of its antecedents.

« is s-provable, notation Pk, «, if a supported proof of a from P exists.
A literal is s-refutable if a denying literal is s-provable.

Definition 9 (Well-supported proof). A well-supported proof of a closed literal « from
a TSS P is like a closed (positive) proof (Definition 3), but admitting steps of the form

3. (B is negative and for every set N of negative closed literals such that P F % for ~
a closed literal denying (3, a literal in K denies one in V.

« is ws-provable, notation P b, «, if a well-supported proof of « from P exists.
A literal is ws-refutable if a denying literal is ws-provable.

Note that these proof-steps establish the validity of 3 when K is the set of literals
established earlier. In case K and NV are sets of closed literals and a literal in K denies
one in N, one has T [£ N for any transition relation 7" with 7' = K. Thus step 3 from
Definition 9 allows one to infer ¢ —%+ ¢/ whenever it is manifestly impossible to infer
t =5 t', or t 4+ whenever for any term #' it is manifestly impossible to infer ¢ - ¢'.
This practice is sometimes referred to as negation as failure [4]. Definition 8 allows such
an inference only if the impossibility to derive ¢ — # can be detected by examining
all possible proofs that consist of one step only. This corresponds with the notion of
negation as finite failure of CLARK [4]. The extension of these notions (especially)
from closed to open literals «, or to transition rules %, is somewhat problematic, and
not needed in this paper. The following may shed more light on F; and +,,;. From here
onwards, statements hold with or without the text enclosed in square brackets.

Proposition 4 Let P be a TSS. Then P F, t £+ ['] iff every closed substitution
instance o of a rule of P has an s-refutable antecedent Moreover P b, t - [t'] iff
t/ contains an ws-refutable literal.

every set N of closed negative literals with P F

Proposition 5 For P a TSS and « a closed literal PFoa = Pr,a = Pl

Definition 10 For P a TSS and « a closed literal, write P =, a if T = « for any
supported model T of P and P =5 o if T = « for any well-supported model T of P.
A notion F,, is called

e consistent if there is no TSS deriving two literals that deny each other.

e sound w.r.t. =, if for any TSS P and closed literal o, P+, o = P =, «

-~

e complete w.r.t. =, if for any TSS P and closed literal o, P, a < P =, .
Proposition 6 I—[w]s is consistent, F5 is sound w.r.t. =5 and b is sound w.r.t. =5 .

However, I, and -, are not complete w.r.t. |=[,),- A trivial counterexample concerns
TSSs like P that have no [well-Jsupported models. P, =), @ for any a, which by
Proposition 6 (consistency) is not the case for F,j;. A more interesting counterexample
concerns the TSS Pr, which has only one [well-]supported model, namely {¢ — ¢}. In
spite of this, Pt/ ¢ s cand P; Plw]s € -

As argued in the previous section, there is a point in excluding P7 from the mean-
ingful TSSs, since there is insufficient evidence for the tramsition ¢ —— ¢. Here the
incompleteness of b, w.r.t. |=[,], comes as a blessing rather than a shortcoming.

3.1 Solutions based on completeness

I will now introduce the concept of a complete TSS: one in which any transition is either
provable or refutable. Just as in the theory of logic there is a distinction between the
completeness of a logic (e.g. first-order) and the completeness of a particular theory (e.g.
arithmetic), here the completeness of a TSS is something different from the completeness
of a proof-method F,. Let x be s or ws.

Definition 11 (Completeness of a TSS). A TSS P is z-complete if for any transition
t 25 t' either P, t %5t or P, t —/+ t'. By ‘complete’ I will mean ‘ws-complete’.

Solution 6 (Complete with support). A TSS is meaningful iff it is s-complete. The
associated transition relation consists of the s-provable transitions.

Solution 7 (Complete). A TSS is meaningful iff it is (ws-)complete. The associated
transition relation consists of the ws-provable transitions.

The TSS Fs is complete, but not complete with support. Fs is even complete with
support. In BoL & GROOTE [3] a method called reduction for associating a transition
relation with a TSS was proposed, inspired by the well-founded models of VAN GELDER,
Ross & ScHLIPF [6] in logic programming. In the full version of this paper I show that
this solution coincides with Solution 7. Solution 7 can therefore be regarded as a proof
theoretical characterisation of the ideas from [6, 3]. Solution 6 may be new.

Proposition 7 The set of [w]s-provable transitions of any TSS is well-supported. More-
over, the set of [w]s-provable transitions of a [w]s-complete TSS P is a model of P.

Proposition 8 Solution 6 [7] is strictly extended by Solution 4 [5].

Proof: Suppose P is [w]s-complete. By Proposition 7 the [w]s-provable transitions con-
stitute a [well-]supported model of P, and by Proposition 6 (soundness) this is the only
such model. Strictness follows from the TSS P7, which has an unique [well-]Jsupported

model, but is left meaningless by Solutions 6 and 7. a
At the end of Section 2 I recommended two acceptable attitudes towards rules like C_:_”.
c——C

In the full paper I show that Solution 7 ignores such rules completely (which is one
option), whereas Solution 6 rejects a TSS with such a rule, unless there is independent
evidence for a transition ¢ —= ¢ (the other option). Moreover, Solutions 6 and 7 reject

any TSS containing rules like C_i/j , unless there is independent evidence for a transition
C C

¢ =+ t. As shown by counterexample P; all model theoretic solutions fail this test.

3.2 Attaching meaning to «/l transition system specifications

In this section I will associate a transition relation to arbitrary TSSs. As illustruted by
P, and P;, such a transition relation can not always be a supported model. I will insist
on soundness (being a model), and thus have to give up support.

Let me first decide what to do with P;. Since the associated transition relation
should be a model, it must contain either ¢ = ¢ or ¢ b4 ¢. For reasons of symmetry I
cannot choose between these transitions, so the only way out is to include both. There
is no reason to include any more transitions. Hence the transition system associated to
Py should be {¢c % ¢, ¢ LN c}.

In the full paper I reject a model theoretic solution that gives this result. Among
the proof theoretic solutions the best I could find was

Solution 8 ([rrefutable). Any TSS is meaningful. The associated transition relation
consists of the ws-irrefutable transitions.

This solution is inspired by the following proposition.

Proposition 9 The set of z-irrefutable transitions of any TSS consititutes a model.

In the case of P; Solution 8 yields the desired result {¢ — ¢, ¢ by c} and likewise Py,
P; and Py yield {c N c}. The transition relation of Pr is the same as the one of P;.
This indicates that Solution 8 is inconsistent with Solutions 2—5. I don’t consider this
to be a problem, as the model theoretic allocation of a transition relation to P; was not
very convincing.

4 Compositionality

In concurrency theory it is common practice to group together representations of con-
current systems in equivalence classes. As system representations often closed terms
over some signature are considered. The equivalence relation employed is then formu-
lated in terms of the transition relation between closed terms obtained from a given TSS
over that signature. All equivalence relations employed in concurrency have the proper-
ties that systems for which the reachable parts of the transition relation are isomorphic
are equivalent, and that a system without outgoing transitions (a deadlock) cannot be
equivalent to a system with an outgoing a-transition.

In order to allow modular reasoning it is important to use an equivalence relation
that is a congruence. This means that the meaning (the associated equivalence class)
of a closed term f(¢y,...,t,) is completely determined by the meaning of the subterms
t1,...,t,. The most popular equivalence relation is bisimulation equivalence. In BoL &
GROOTE [3] it was established that for complete TSSs whose rules satisfy a syntactic
criterion (the well-founded ntyft/ntyxt format, developed earlier in [9, 8]), bisimulation
equivalence is guaranteed to be a congruence, and so are many other equivalence rela-
tions. Moreover, a counterexample was given against the extension of this result to TSSs
that are meaningful according to Solution 5 (stable). Of course the example concerned
an incomplete TSS in well-founded ntyft/ntyxt format with a unique stable transition re-
lation for which bisimulation is not a congruence. This TSS also has a unique supported
model, and thus shows that the congruence theorem does not generalise to Solution 4
either. Here I show that also Solution 8—or any other proof theoretic solution giving

meaning to all TSSs for that matter—does not lend itself to such a generalisation, in-
dicating that Solution 7 (complete) is the most general one for which this nice result
holds. My counterexample concerns the following TSS S over a signature with constants
¢, d and e and a unary function f.

S |ec— f(o) @) e

This TSS is surely in the well-founded ntyft/ntyxt format. The transitions ¢ — f(c),
d -2+ e and f(d) % c are [w]s-provable, and with the exception of f(c) — ¢, all other
transitions are [w]s-refutable. As the validity of f(c) —— c is left undetermined, the
TSS is incomplete (has no meaning according to Solution 7). It also has no meaning
under Solution 5 (stable). The proof theorectic approach offers only one choice, namely
whether or not to include the transition f(¢) — c. Each of these possibilities yields
a transition relation for which no equivalence relation used in concurrency theory is
a congruence. Solution 8 (irrefutable) includes the transition f(¢) — ¢. Now ¢ and
f(c) are equivalent (the reachable part of the transition relation from each of them
is an a-loop), but f(c) and f(f(c)) are inequivalent (f(f(c)) deadlocks). Taking only
the provable transitions (instead of the irrefutable ones) would exclude the transition
f(c) == c. In that case ¢ and d are equivalent, but f(c) and f(d) are not.

5 Conclusion

This paper dealt with the problem of associating a transition relation to a given TSS.
The related problem of finding a good TSS to specify a given transition relation is left for
future research. I presented 8 answers to the question of which transition system specifi-
cations are meaningful and which transition relations they specify. The relations between
these 8 solutions, as well as the two solutions (9 and 10) proposed in [8], are indicated
below. There S; — S5 indicates that solution 53 extends Sy, as defined in Section 1,

positive (1) strictly stratified (10)

complete with support (6)
stratified (9)

complete (7)

least m?del (2) # unique su};ported (4)

#

|
stable (5) — # — irrefutable (8)

least supf)orted (3)

and S1#5; indicates that S1 and S are inconsistent. By the definition of extension and
consistency, S; — Sy — S3 implies S; — S3 (transitivily) and Sy # Sz — S3 implies
S1#£S3 (conflict heredity). All extensions are strict and there are no more extensions

10

or inconsistencies than indicated in the figure (or derivable by transitivity and conflict
heredity). Strictness, the absence of further extensions and the inconsistencies follow
from the information collected in the table below, which indicates which of the TSSs
P—F5 given in this paper are meaningful according to each of the solutions. A ‘-’
indicates that the TSS is meaningless, a ‘4’ that it has the same meaning as given by
Solution 8, and a ‘¢’ that is has a meaning different from the one given by Solution 8.

Solution P1 P2 P3 P4 P6 P7 Pg
1 | positive - | = - | =

least — | +
least supported - | =

|
* ¥ +

unique supported - | =
stable - | -
complete with support | — | —

|
* % % %

complete - | =
irrefutable + |+
stratified - | =
strictly stratified - | =

+ 4+t

© 00 =1 O T W N
I+ 4++ 1 + 1 ++ +|T
|
|
|

e
|

—
]

Evaluation of the solutions

Solution 9 (stratified) stems from PrRzyMUSINSKI [11] and is the perhaps the best known
solution in logic programming. A variant that only allows TSSs with a unique supported
model is Solution 10 (strictly stratified), proposed by GROOTE [8].

Solution 1 is the classical interpretation of TSSs without negative premises, and
Solutions 2 (least model) and 3 (least supported model) are two straightforward gener-
alisations. Solution 4 (unique supported model) stems from BLoom, IsTRAIL & MEYER
[2], where it was used to ascertain that T'SSs in their so-called GSOS format are mean-
ingful (such TSSs have unique supported models). My counterexample P; shows that
Solution 4 yields contraintuitive results and is therefore not suited to base such a con-
clusion on. Fortunately, TSSs in the GSOS format are even strictly stratified, which is
one of the most restrictive criteria for meaningful TSSs considered. Solution 3 can be
rejected on the same grounds as Solution 4 and Solution 2 is not very useful because it
leaves most TSSs with negative premises meaningless (cf. Ps).

Solution 5 (unique stable transition relation) stems from GELFOND & LIFSCHITZ
[7] and is generally considered to be the most general acceptable solution available.
Counterexample Pr however suggests that this solution may yield debatable results,
although to a lesser extent than Solutions 3 and 4.

Solution 7 (well-founded, positive after reduction, complete) is essentially due to
VAN GELDER, Ross & ScHLIPF [6]. It is the most general solution without undesirable
properties. In BoL & GROOTE [3], where this solution has been adapted to TSSs, an
example in the area of concurrency is given (the modelling of a priority operator in basic
process algebra with abstraction) that can be handled with Solution 7, but not with
Solution 9. This example can neither be handled by Solution 6, showing that the full
generality of Solution 7 can be useful in applications.

My presentation of Solution 7 differs so much from the original one [6, 3] that I
gave it a new name. It is based on a concept of provability incorporating the notion
of negation as failure of CLARK [4]. In the full paper I establish the correspondence
between my version and the one from [6, 3]. There I also illustrate how my proof-
theoretic characterisation can be useful in applications.

11

Solutions 6 (complete with support) and 8 (irrefutable) may be new. The first is
based on a notion of provability that is somewhat simpler to apply, and only incorporates
the notion of negation as finite failure [4]. Moreover, it only yields unique supported
models, like Solution 10 (and 4). Solution 8 appears to be the best way to associate a
transition relation to arbitrary TSSs. However, it has the disadvantage that it sometimes
yields unstable transition relations, and even unsupported models. A good example
from concurrency theory of an incomplete TSS is Basic Process Algebra with a priority
operator, unguarded recursion and renaming, as defined in GROOTE [8]. This TSS has
no supported models. Solution 8 does give a meaning to this TSS, but it appears rather
arbitrary and not very useful. In particularly, recursively defined processes do no longer
satisfy their defining equation, which makes algebraic reasoning virtually impossible.
Also the absence of a congruence theorem as demonstrated in Section 4 is a bad property
of this Solution. Hence, Solution 7 (complete) remains the most general completely
acceptable answer to (1) and (2).

Acknowledgments This paper benefited greatly from the insightful comments of
Roland Bol. Also my thanks to the audience of the PAM seminar for useful feedback.
Finally, Jan Rutten is gratefully acknowledged for spotting a mistake in a previous
version of this paper (see Footnote 2).

References

[1] K.R. ApT & R. BoL (1994): Logic programming and negation: A survey. Journal of Logic
Programming 19-20, pp. 9-71.

[2] B. BrooMm, S. IsTRAIL & A.R. MEYER (1995): Bisimulation can’t be traced. JACM 42(1),
pp. 232-268.

[3] R.N. Bor & J.F. GROOTE (1991): The meaning of negative premises in transition system
specifications (extended abstract). In J. Leach Albert, B. Monien & M. Rodriguez, editors:
Proceedings 18" ICALP, Madrid, LNCS 510, Springer-Verlag, pp. 481-494. Full version to
appear in JACM.

[4] K.L. CLARK (1978): Negation as failure. In H. Gallaire & J. Minker, editors: Logic and
Databases, Plenum Press, New York, pp. 293-322.

[5] F. FagEs (1991): A new fizpoint semantics for general logic programs compared with the
well-founded and the stable model semantics. New Generation Computing 9(4), pp. 425-443.

[6] A.vaN GELDER, K. Ross & J.S. ScHLIPF (1991): The well-founded semantics for general
logic programs, JACM 38(3), pp. 620-650.

[7] M. GELFOND & V. LirscHITZ (1988): The stable model semantics for logic programming.
In R. Kowalski & K. Bowen, editors: Proceedings 5" International Conference on Logic

Programming, MIT Press, Cambridge, USA, pp. 1070-1080.

[8] J.F. GrRooOTE (1993): Transition system specifications with negative premises. Theoretical
Computer Science 118(2), pp. 263-299.

[9] J.F. GROOTE & F.W. VAANDRAGER (1992): Structured operational semantics and bisim-
ulation as a congruence. Information and Computation 100(2), pp. 202-260.

[10] G.D. PrLoTKIN (1981): A structural approach to operational semantics. Report DAIMI
FN-19, Computer Science Department, Aarhus University.

[11] T.C. PRZYMUSINSKI (1988): On the declarative semantics of deductive databases and
logic programs. In Jack Minker, editor: Foundations of Deductive Databases and Logic
Programming, Morgan Kaufmann Publishers, Inc., pp. 193-216.

12

