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GOOD COVERINGS

In the cohomology theory of differentiable manifolds, e.g. in the proof of the
De Rham—theorem and the treatment of Poincaré-duality, it is used that every
open covering of a paracompact differentiable manifold has a refinement
Uh{ui}isl with the property that each non—-empty finite intersection
Uy n-.-nUik 1s diffeomorphic with R™, A covering with this property is called
"good". The existence of such good refinements is mostly proved by referring
to some theorems in differential geometry, which are out of the scope of
cohomology theory:. The aim of this paper is to show how to obtain good
coverings in an elementary way, without using differential geometry. To start

I prove the following theorem:

THEOREM 1: let erECRn, E open, VcR™ and f:E+V be a homeomorfism with both f

and f_1
* ,
6<6 , the open ball B(x0,6)={xeRn,|x-x0|<6} is entirely contained in E and

*
C2—functions. Then there exists a § >0 such that for every §>0 with
f(B(xO,B)) is a convex subset of V.

* *
PROOF: Taylor's formula tells us that if V CVCRn, with V open, V compact and
n
convex, and f:V»R 1is a Cp—function, then for each x,heRp with both x and

*
x+h €V , some e=(el,...,en) eR" with 0<6

i<1 exists such that

(1)  £(xth) = £(x) +%!D1f(x) Foaee + ?—l—ﬁn—lf(x) + R (x,h) with

n-1)!
n k
pXE(x) = ) h, .och, o2 ——(x) and (x,h) = = DE(x+eh).
. i 1, "9X, «eedX m m!
11...ik=1 1 k 11 ik

*
Furthermore, since each continuous function has a maximum and a minimum on V ,
+
there is a MmeR such that

m
9 fi

lax1 ...axi
1 m

*
(x)'<Mh for each %V and each 1<il,...,im,i<n.

This implies that for each component Rm i(x,h)eR of R.m(x,h)eRn we have

1 n amfi nﬁ n
lRm,i(x’h>' < ) lhi I"'Ihi "'ax ceedX (x+oh)| < m!IhI M
i .01 =1 1 m i i
1 m 1 m

%
so that, for all x,h€Rn for which both x and =+h € V :



(2) IR G, =/ [ IR .12 < ﬁ%anhlhlm = k_[h|", with K I my,

= o
=1 R m m! m

e~

Now let X5, E,V and f be as in the theorenm. Without limiting the generality of
the theorem, I may assume that XO—O. Choose V CV compact and convex, such that
£(0) € Interlor(V ), and €>0, such that B(O,e)Cf (V )CE. From (1) and (2) I
conclude the following. Firstly, there exists some K eR , such that for each z

% 1
and z+k €V

) 1E @l < £ D1+ R Ikl

+
and secondly, there exists some K, eR such that for each

w=xt+h €B(0,e) and v=x-h €B(0,¢)

2

n af )
f(x+h) f(x) + ) hj % (x) + Rz(x,h) with |R2(x,h)|< K2|h| and

j"l j

L]

f(x=h) = f(x) - 2 h (x) + R (x, h) with IR (x, h)|<K lhl

"3

Hence #f(x+h) + +f(x-h) = f(x) + (%Rz(x,h) + iRz(x,—h)) with

joax

2
|%R2(x,h) + %Rz(x,—h)l < K2|h| or, in other words:

(4)  3£(u) + 3E(v) = (———) + R (u,v) with IR (u,v)| < K, 15T v|2

Note that, when u and v are chosen in B(0,e), then both f(“——O and
+f(u)+3f(v) lie in V , 80 that (3) and (4) can be combined to:

() 1EEAE + )1 = 1£EEED + (0, <
(4) (3)

LEHES + R IR (0,0 < 125+ kK 15Y2,
(&)

*
Now let § be the minimum of ¢ and 2K1K
*
for each 0<8<6§ : f(B(0,68)) is convex.lNote that for an open set S to be convex
x+
it suffices that x,yeS implies ——X'es; this because x,yeS implies that

2
+ x+
B(x,8)<cS and B(x,8)cS for some §€R , so that also B(—EZ,G)CS, and by repeating

« Then it is sufficiént to prove that

this argument a finite times it turnes out that the entire linesegment

{Ax+(1-x)y, Ae[O,l]} is contained in S.

* x+
So let 0<§<8 and x,y€ £(B(0,68)); it must be proved that also —Ezef(n(o,a)).



Set u=f_l(x) and v=f_l(y), then u,veB(0,8), or |ul<§ and |v|<§. I have to

prove that #+f(u)dif(v) ¢ £(B(0,6)), which means f-l(ff(u)+if(v))eB(0,6) or
£ L (1ECuy+HE(v))I<S. From (5) it follows that

|f-1(if(u)+%f(v))l < LEEXI + E§1E%X|2, so it suffices to prove that

PEEX <§ - E%.E§X|2. Since |u|<é and |v|<§ the righthand side of the last
inequality 1is positive and therefore the inequality is equivalent with:

122 < (s - 5150 2)D).

This can be proved by using the cosinus—-rule in the following way:

wu, . v+
15412 4 1552 - 21 5 cos (B, T = |v)2 < 62
| 2v|2 + |u2V|2 - 2| v |u;V'cos( zv,u;v) = |ul2 < 62,
Since either cos( zv, 2 )<0 or cos( 2 , 2 )<0 it follows that
I———12 + | & l2 < 62, and this implies that

1l u-v 2 1l u-v 2

——2 2_—2 2_—--2 2 = 2
=12 < & =12 < & =712 + G151 (8 = 5515187, which had

to be proved.

THEOREM 2:Any nonempty open convex subset of R is diffeomorphic with rR?
itself.

1 »

PROOF: It can even be proved that for any ¢eC°(Sn_ ,R) with >0 the set
n—-1 n n

B = {rw, wS , reR, o<r<y(w)} is diffeomorphic to E ={xeR ,|x|<l}, and

therefore to Rp; and since any nonempty open convex subset of R" is

diffeomorphic to such a set B the theorem follows.

let WECO(Sn—l,R), y>0 be given and let w*eRf be the minimum of y on Snyl.
Now, for k=2,3 4,... choose w eC. (S R) such that (1-2_2k)w < wk < (1—2—2k—1)¢,
and let wleC (S ,R) be given by wl(w) =iy Vyo
+ [ -
Furthermore, for keN define hkec (S ,R) by h (wo ¢k+1( w) - wk(w) -2 2(k+1)¢*
o, =2k . .=2(k+l) o/ (x-142 2 (1272,
and g eC ((1-2 ,1-2 ),R) by g (r) =
k k 12 (k1) —2k ~2(kt1)
oM (y-142 “T)(y-142 )4
y=1—2_2k
-2k-2

Note, that for keN : < (1-27%F Ny < (1-2

128 W < L hence



-2k~-2 -2k-1 -2k-2 ~-2(k+1
Vi1 Vi 2 (1-2 W - (1-2 W= 2 v o> 2 ( )q;*, and h, >0.
+
Note also, that for keN and i=0,1,2,...
r r
1 lim _ /] _.. 8 (y)dy =0 and 1lim J g, . (pdy =1
ry1-2 2k 12 2k “k r+1=-2 2k 1=2 2(k-1) °k-1
d%k d%kd
I1 1lim —9k i (r) = 1lim —2k ——~;f—'(r) =0
r+l-2 dr r4l1-2 dr
1-2" e 1-2"Kype
II1 1im'% | ok &(Mdy = 1im'% f -2k gk_l(y)dy =0
ty0 " 1-2 t40 ~ 1-2
i i
dg - dg, _ _
v limt —E (1270 = 1 —L 27 = 0
t40  dt t40 dt
From here on I use polar codrdinates (r,w) with re[0,+) and w=(w1,...,wn_1)esn—1.
Define f:E+Rn by:
fw(r,w) =y
‘J)* 3
Yo, if r<_
[ 3 4 +
f (r,w) = ¢ ¢, (W) if r=1-2 with keN
r \ Tk A -2k ~2(ke+1) +
v (W + [ 03 + h (g (y)dy 1if 1-2 TKr<1-2 with keN .
y=1~2
I shall prove that f is a diffeomorphism from E to B.
1. fr is continuous,
In order to show that f. is continuous in (ro,wo)eE, one has to check
that lim £ (r,w) = £ (rg,w). This is trivial for 1—2'2k<r0<1-2'2(k+1) (keN'),
wr

3

and for ry<; and since lim f (ryw) = £ (r,WO) I only have to check that
4 WWy T T

2

-2k +
%}gofr(r,wb) = fr(ro,wb) for ry=1-2 (keN ), or that

1im _, £ (r,w) = 1im _, f (r,w) = ¢, (w). Using "I" one finds:
r41-2 2k r r+1-2 2k 'r k
Y ~2k z
lim _Zk[wk(wo +‘§-{r—(1-2 )} o+ h, (w) f —ok gk(y)dy] = wk(w) and
r¢l1-2 y=1-2
Ve ]
=1: _*_ 3
for k-l- lim 2k r-3 = 4.3 = %w* = wk(w)’

rdl-2"
lp — —
for k»2: lim —Zk[wk_l(w) +§*{1‘—(1"2 2(k 1))

r
+h 0 [ oy 8o (Mdy]=
e bty 1{2 2(k-1) 8k-1 ]



Vs -
)+ ORI

(w) + = .3 72k V(W) = ¥, (W) - 2 Ty, = ¥ (W,

k

V-1

s0 fr is continuous.

Bcf(E).

+
Let (ry,wy)eB be given, so O<ry<y(wy). Choose keN 1in such a way that
-2k
o < (1-2 Wwy) < (wy). Now f is a continuous function on a
0 0 k0 r|w=w

connected set, taking on the values 0 (in r=0) and wk(wo) (in r=1—2—2k)’

and therefore also taking on the value rj, say in r;. Now (rl,wo)eE and
f(rl ,Wo) = (ro ,Wo)c

of
fr is differentiable with respect to r and's;I>O on E,.

This is again trivial for r<% and for 1—2-2k<r<1-2—2(k+1) with ksN+
so take r=1—2-2k (k€N+).
£.(rtt,w) - £ (r,w) 1 1-2" 2y Uy
1im =lim~ [ = + h(wg (ydy-=
t40 t 40 © y=1—2 2k 3 kK
1 Vs L1 2 Vi
1im L= t) + h (wO lim < f g (y)dy = 5 (using III).
40 t'3 t40 t -2k k 3
Vs Ve
£ (3rt,w) - £ (3,w) G -7y
r4 r4 3 %4 4 *
For k=1: 1lim T = 1im e =3
t40 t40

fr(r+t,w) - fr(r,w)
For k»2: lim =

£40 ¢
1-27 ey,
a1 L g 3 F B (08 (D8 = ()] =
40 y=1-2
1-272% oy,
o b (0 + Jrer 3 B (D8 Dy -y (0] +
t4
1-2" ey,
1inm —{ / _ 7 +h (Wg  (y)dy| = (using III)
r0 B pigm2k 3 T P18y ]
- v

*
lim [¢ (s .3.2” % (W)=, (w)] + linm —1—'t) + (w).0 =
I S A b 1 (9] o0 b



o -2k,
So fr is differentiable with respect to r and ST (1-2 “™) = 3
V. -
3 /3 if r<3 and 1f r=1-2"2F (ken’)
37 (T,W) \ v
* - -
3 + b (wg(r) 1f 1-27Kere-27 20D iy,
afr
and since y, >0, hk>0 and gk>0 it follows that S;')O on E.

f(E)<B.

(keN+).

Let (ro,wb)CE be given, so ro<l. Choose keN+ in such a way that ry < 1-2—2k.

of

Now fr is an increasing function (because

w=Wy or

taking on the values 0 (in r=0) and ¢k(wb) (in r=1—2—2k), so it follows

that 0 < fr(ro,wo) < ¢k(wo) < y(wy) and f(rj,w,)eB.

f is injective.

Suppose f(r;,w;) = f(rl,wl) = (r,,w,) then Wg = Wy = W,

f l : [0,1)*»R is an increasing function, which takes on the value r,
r W=W2

only once.

0
f is C .

For xeRn, |x|<1, f is a lineair function given by f(x)=

certainly is C in r=0. f is also C on the rest of E" if for n=0,1

and

Xc3

——F>0) on a connected set,

« Therefore f

For

all nPeorder partial derivatives exist and are continuous on En\{O}.
fw this is trivial, for fr the partial derivatives turn out to be:
0 ; if r<%
vy

. k 2k

3t 3w, +..0w, (W 1f r =1-2
______E____( W) = i1 ij
awi oo sdWy ’ i j

1 h| 7, 3 h, r

{ { d
dw, woeow, 0 Yo W [ g gDy
il ij il ij 1-2

. 1€ 1-272K¢rq—p7 20D
——F(r ) = as above
or W ]

S i3, 0 1f r<%'and 1f r=1-272K

r . j i-1
\r,w) = ] d g - -
ariawi e W, - hkaw (w) . i___llt(r) if 1-2 2k<r<1—2 2(k+1)
1 j i "% dr

1 3

(3>1)

(1,3»1
or i>2).



Because of 1 and II, the continuity of all these partial derivatives
follows as in 1, Their differentiability with respect to any wy is clear;
as to their differentiability with respect to r,because of III and IV,
this follows as in 3. Thus by induction, f is C%.

- - f f f
7. f is C . _i_r _i_r E_;
ar aw e aw
n-1
of of of
_¥, ¥ —w
This is the case if J =}{3r W **t Hw #0 on E {0}.
1 n-1
of afw afw
3;'n—1'3; n—l...'sa n-1
1 n-1

[For r=0 the statement is again triviall.

of of

_r _r

or ow -1
01 0..0 o"

of
But indeed J = 00 1..00 = §;r>0 as is proved in 3.

0 0 0..1 0
0 0 0 ... 0 1

THEOREM 3 (Dieudonné): Every paracompact space is normal.

THEOREM 4 (Bourbaki): Letll={ be a locally finite open covering of a

Ui}ieI
normal Hausdorffspace X, then an open coveringUﬁ={

exists, with ﬁicUi for all iel.

wi}ieI (same indexset) of X

PROOFS: See, for instance, C. Teleman: Grundziige der Topologie und
differenzieerbare Mannigfaltigkeiten, pages 115 and 117,
[Berlin, VEB Deutscher Verlag der Wissenschaften, 1968].

THEOREM 5: Every open covering of a paracompact differentiable manifold has a

good refinement.

PROOF: Let U'be an open covering of a paracompact differentiable manifold X,

W' a refinement of U", so that every U'elU is contained in one codrdinate

neighbourhood, and U a locally finite refinement of U'. Say ll={Ui }ieI; for
each iel there exists a diffeomorphism ¢1:U1+EicRn. According to theorems 3

and 4, an open coveringlﬂé{w of X exists with WicUi for all iel.

i}ieI



Since U is locally finite, there exists around each point xe€X an open
neighbourhood Vx"ax which has points in common with only finitely many sets
U;. Now for each point xeX define VX' = Vx"n( N Ui)ﬂ( N Wi)n( N -ﬁicomplement

Uiax Wiax Uiéx

).

Because WiC:)Uic this intersection does not change if all those -ﬁic's are left

out for which Uinvx" =4 (or: Vx"cUiC), so Vx' can be regarded as a finite

intersection of open sets containing x, and therefore is an open set

containing x itself.
Write I_ = {ie€Il, U 3x}; note that I_#6, and choose some
X i X
element ioeIx. For each other element iGIx we can use theorem 1 in the
s o A\l t= ' .
following way. Let x;: wio(x), E: rpio(Vx )y V(i) wi(Vx ) and f(i) E*V(i) be
-1
the diffeomorfism by 004 IE' Now a Gi>0 exists, such that for every &0 with
0
-1
\ |
8<8,, B(wio(x),ﬁ)cwio(vx ) and ¢iowio(3(¢io(x),6)) is convex. Let Gj be the
smallest of all Gi we have found this way, and set Vx = w;l(B(wi (x),8)),
0 0
then xeVeV ' and ¢, (V. ) is convex for all ieI_.
X X i''x X
It is easily checked that for szx the following holds (for each xe€X):

1) If chi then Vfcwi
—c
2) 1f x4U; then Vizwi

3) If xeU, then chU

1 and wi(Vx) is convex.

i

Claim: is a good refinement of U".

{Vx }xcx

Proof: For each xeX there exists a U; with xeU, and (by 3)) chUi,

hence is a refinement of U and therefore of W".

{Vx}xcx
0
Now suppose V_n ...nV_ #4 (keN ). Choose ieIl such that xocw « By 1) we
Xq X, _ i
have Vx ;wi and there is no xj (0<j<k) with xj¢Ui, since for such a xj 2)
0
would imply that V_ eW,eW eV €, contradicting V. nee.V_N...nV_ 26.
xj i i X, xO x3

Thus for 3=0,...,k xjeUi and, by 3), Vx:cU and :pi(Vx ) i8 convex.

i

Th f 1 ese = XX

erefore also wi(vxo)n nwi(ka) wi(Vxé\ nV_ ) is convex, which

means that Vx N...nV is diffeomorphic with a non—-empty open convex
0 i

subset of Rn, and therefore, by theorem 2, also with R" itself. .



