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1. Review. Suppose Lz, L2, L3, ... are each regular languages. Using what we know of

regular operators and closure properties, can you conclude that L1 ∪ L2 ∪ L3 ∪ ... is a

regular language?

Answer: Consider L1 = ε, L2 = 01, L3 = 0011, L4 = 000111, and so on. Note each

language Li is regular (since it is finite); however it is easy to see that the union of all

such languages is L = { w | w ∈ 0n1n, n≥0 }, which we have previously shown to be non-

regular (via the Pumping Lemma for regular languages). In fact, since we may write a

CFG to describe this language, we may conclude that L is a context free language.

2. State Minimization. Consider the DFA defined as follows:

0 1

A B E

B C F

*C D H

D E H

E F I

*F G B

G H B

H I C

*I A E

Thus A is the initial state, and C, F, and I are the final states. Minimize this DFA.

Answer: We may find the equivalent minimized DFA using the table filling algorithm

covered in HMU and in discussion section. We begin by noting that all final states and

non-final states cannot be equivalent, and proceed to establish potential equivalences

between the remaining states. Then, we iteratively eliminate all potential equivalences



that depend on equivalences we have shown cannot hold. The result is the following

table:

B BC, EF

C

D BE, EH CE, FH

E BF, EI CF, FI EF, HI

F DG,BH

G BH, BE CH, FB EH,BH FH, BI

H BI, CE CI, CF EI, CH FI, IC HI, BC

I AD,EH AG,BE

A B C D E F G H

The remaining squares cannot be shown to be non-equivalent (they reference each other)

and thus we will assume that they are equivalent. Hence we obtain that states AD, AG,

BE, BH, CF, CI, DG, EH, and FI. Since we may apply transitivity for the equivalence

operator we end up with the equivalence classes: {A, D, G}, {B, E, H}, and {C, F, I}.

Each class may be transformed into a state, and the transitions for the minimized DFA

determined using the transition table above (i.e., on 0, A->B, so {A, D, G} -> {B, E, H}).

Note {A, D, G} is the new start state and {C, F, I} is a final state.

3. CFG Conversion. Consider the following grammar:

S  0S0 | 1S1 | 

a) What is this language?

Answer: This is the language L = { x | x is of the form wwR, where |w| ≥ 0 }. Note each x

∈ L is a palindrome, but since all strings in L are even, L does not include all possible

palindromes.

b) Convert this grammar into a pushdown automata.



Answer: The formulaic construction outlined in the text is sufficient in this case. This

requires only three states (qstart, q loop, and qaccept) Σε = { 0, 1, ε } and Γε = { 0, 1, S, $, ε }.

The following table describes the behavior of the PDA by defining (next state, top stack)

given (current state, current input, current top of stack):

0 1

0 1 S $

qstart qloop,  S$

qloop qloop,ε qloop,ε qloop,0S0
qloop,1S1

qloop,ε

qaccept, ε

qaccept

4. Chomsky Normal Form. Convert the following grammar to Chomsky Normal Form,

eliminating all non-generating non-terminals as well as unreachable non-terminals.

V = {S, X, Y, Z, W}

Σ = { (, ), +, =, 0, 1 }

S  X=X

X  (X+X) | Y | X

Y  0Y | 1Y | 0Z | 1Z | W

Z  

Answer:

1) Add a new start symbol (to prevent S from ever appearing on the right hand side):

S0  S

2) Eliminate ε-productions:

Y  0Y | 1Y | 0Z | 1Z | 0 | 1 | W

3) Remove unit rules:



X  (X+X) | 0Y | 1Y | 0Z | 1Z | 0 | 1 | W

S 0  X=X

4) Remove non-generating non-terminals (W , Z, and S) and remove unreachable non-

terminals (none):

X  (X+X) | 0Y | 1Y | 0 |1

Y  0Y | 1Y | 0 | 1

5) Add additional non-terminal symbols to finish the conversion. Note this is a

mechanical conversion and further simplification may be possible. This corrects the error

made in section in which the D in the X  CD rule was inadvertently ignored.

S0  AX A  XB

B  = X  CD

C  EF E  (

F  XG G  +

D  XH H  )

X  UY X  VY

X  0 | 1 Y  UY

Y  VY Y  0|1

U  0 V  1

5. Miscellaneous.

a) Design a PDA to accept the language L = { w |  w ∈ {a + b + c}* and # of a’s ≥ # b’s +

# c’s }.

Answer: The solution presented here is simplified from the one covered during

discussion section. We will use the following alphabets:

 = { a, b, c,  }



 = { A, B, $,  }

Q = { X, Y, Z}

Start state: X

Final state: Z

a b OR c

A B $ A B $ A $

X Y, $

Y Y, AA Y, Y,  A$ Y, Y, BB Y, B$ Y, Z, 

Z

b) How could you determine whether a CFG G generates an infinite number of strings?

Answer: This is a good question to think over as you prepare for the midterm. As a hint,

think of converting the grammar to CNF form and eliminating all non-generating and

unreachable non-terminals from the grammar. Thus the language of the new grammar G’

is the same as the language of G. Now consider a tree with the start symbol S as its root

and all possible expansions of S as the children of this node; for every non-terminal child

of the root, repeat this procedure until a terminal is reached. Of interest will be an

expansion chain from S that has more than n non-terminals present (where n is the

number of non-terminals in G’) prior to reaching a terminal symbol (at which point the

expansion stops).


